Search Results

Now showing 1 - 10 of 11
  • Item
    Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in 2D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio Pietro; Rocca, Elisabetta; Sprekels, Jürgen
    We study a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids coupling the Navier-Stokes system with a convective nonlocal Cahn-Hilliard equation in two dimensions of space. We apply recently proved well-posedness and regularity results in order to establish existence of optimal controls as well as first-order necessary optimality conditions for an associated optimal control problem in which a distributed control is applied to the fluid flow.
  • Item
    Entropic solutions to a thermodynamically consistent PDE system for phase transitions and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Rocca, Elisabetta; Rossi, Riccarda
    In this paper we analyze a PDE system modelling (non-isothermal) phase transitions and damage phenomena in thermoviscoelastic materials. The model is thermodynamically consistent: in particular, no small perturbation assumption is adopted, which results in the presence of quadratic terms on the right-hand side of the temperature equation, only estimated in L1. The whole system has a highly nonlinear character. We address the existence of a weak notion of solution, referred to as entropic, where the temperature equation is formulated with the aid of an entropy inequality, and of a total energy inequality. This solvability concept reflects the basic principles of thermomechanics as well as the thermodynamical consistency of the model. It allows us to obtain global-in-time existence theorems without imposing any restriction on the size of the initial data. We prove our results by passing to the limit in a time discretization scheme, carefully tailored to the nonlinear features of the PDE system (with its entropic formulation), and of the a priori estimates performed on it. Our time-discrete analysis could be useful towards the numerical study of this model.
  • Item
    A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta
    We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective nonlocal Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of the global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective nonlocal Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.
  • Item
    Optimal control for a phase field system with a possibly singular potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Gilardi, Gianni; Marinoschi, Gabriela; Rocca, Elisabetta
    In this paper we study a distributed control problem for a phase-field system of Caginalp type with logarithmic potential. The main aim of this work would be to force the location of the diffuse interface to be as close as possible to a prescribed set. However, due to the discontinuous character of the cost functional, we have to approximate it by a regular one and, in this case, we solve the associated control problem and derive the related first order necessary optimality conditions.
  • Item
    On asymptotic isotropy for a hydrodynamic model of liquid crystals
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.
    We study a PDE system describing the motion of liquid crystals by means of the Q?tensor description for the crystals coupled with the incompressible Navier-Stokes system. Using the method of Fourier splitting, we show that solutions of the system tend to the isotropic state at the rate (1 + t)-β as t → ∞ for a certain β > 1/2 .
  • Item
    On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Eleuteri, Michaela; Rocca, Elisabetta; Schimperna, Giulio
    We introduce a diffuse interface model describing the evolution of a mixture of two different viscous incompressible fluids of equal density. The main novelty of the present contribution consists in the fact that the effects of temperature on the flow are taken into account. In the mathematical model, the evolution of the velocity u is ruled by the Navier-Stokes system with temperaturedependent viscosity, while the order parameter Phi representing the concentration of one of the components of the fluid is assumed to satisfy a convective Cahn-Hilliard equation. The effects of the temperature are prescribed by a suitable form of the heat equation. However, due to quadratic forcing terms, this equation is replaced, in the weak formulation, by an equality representing energy conservation complemented with a differential inequality describing production of entropy. The main advantage of introducing this notion of solution is that, while the thermodynamical consistency is preserved, at the same time the energy-entropy formulation is more tractable mathematically. Indeed, global-in-time existence for the initial-boundary value problem associated to the weak formulation of the model is proved by deriving suitable a-priori estimates and showing weak sequential stability of families of approximating solutions.
  • Item
    Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio
    We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [12] where existence of weak solutions was proved in three space dimensions. Here, we aim at studying the properties of solutions in the two-dimensional case. In particular, we can show existence of global in time solutions satisfying a stronger formulation of the model with respect to the one considered in [12]. Moreover, we can admit slightly more general conditions on some material coefficients of the system.
  • Item
    On a diffuse interface model of tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta
    We consider a diffuse interface model of tumor growth proposed by A. Hawkins-Daruud et al. This model consists of the Cahn-Hilliard equation for the tumor cell fraction φ nonlinearly coupled with a reaction-diffusion equation for ψ which represents the nutrient-rich extracellular water volume fraction. The coupling is expressed through a suitable proliferation functionp(φ) multiplied by the differences of the chemical potentials for φ and ψ. The system is equipped with no-flux boundary conditions which entails the conservation of the total mass, that is, the spatial average of φ+ψ. Here we prove the existence of a weak solution to the associated Cauchy problem, provided that the potential F and p satisfy sufficiently general conditions. Then we show that the weak solution is unique and continuously depends on the initial data, provided that p satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of a strong solution and that any weak solution regularizes in finite time. Finally, we prove the existence of the global attractor in a phase space characterized by an a priori bounded energy.
  • Item
    Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Heinemann, Christian; Rocca, Elisabetta
    In this paper we prove existence of global in time weak solutions for a highly nonlinear PDE system arising in the context of damage phenomena in thermoviscoelastic materials. The main novelty of the present contribution with respect to the ones already present in the literature consists in the possibility of taking into account a damage-dependent thermal expansion coefficient. This term implies the presence of nonlinear couplings in the PDE system, which make the analysis more challenging.
  • Item
    Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in 3D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Rocca, Elisabetta; Sprekels, Jürgen
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn-Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: The state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem.