Search Results

Now showing 1 - 10 of 11
  • Item
    Evolution of a molecular shape resonance along a stretching chemical bond
    (College Park, Md. : APS, 2020) Brausse, Felix; Bach, Florian; Krečinić, Faruk; Vrakking, Marc J.J.; Rouzée, Arnaud
    We report experiments on laser-assisted electron recollisions that result from strong-field ionization of photoexcited I2 molecules in the regime of low-energy electron scattering (<25  eV impact energy). By comparing differential scattering cross sections extracted from the angle-resolved photoelectron spectra to differential scattering cross sections from quantum-scattering calculations, we demonstrate that the electron-scattering dynamics is dominated by a shape resonance. When the molecular bond stretches during the evolution of a vibrational wave packet this shape resonance shifts to lower energies, both in experiment and theory. We explain this behavior by the nature of the resonance wave function, which closely resembles an antibonding molecular orbital of I2.
  • Item
    Intracluster Coulombic decay following intense NIR ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay.
  • Item
    Correlated electronic decay following intense near-infrared ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.
  • Item
    Time-resolved investigation of transient charges in laser-produced nanoplasmas
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a transient C4+ ion charge state in nanoplasmas produced by the interaction of intense near-infrared (NIR) laser pulses with CH4 clusters. The underlying dynamics are studied by pump-probe spectroscopy, which reveals that the ion charge states are lowered by electron-ion recombination. Furthermore, we present direct evidence that autoionization of multiply-excited ions plays an important role in expanding nanoplasmas, in contrast to models that neglect quantum phenomena.
  • Item
    Time-resolved site-selective imaging of predissociation and charge transfer dynamics: The CH3I B-band
    (Bristol : IOP Publ., 2020) Forbes, Ruaridh; Allum, Felix; Bari, Sadia; Boll, Rebecca; Borne, Kurtis; Brouard, Mark; Bucksbaum, Philip H.; Ekanayake, Nagitha; Erk, Benjamin; Howard, Andrew J.; Johnsson, Per; Lee, Jason W.L.; Manschwetus, Bastian; Mason, Robert; Passow, Christopher; Peschel, Jasper; Rivas, Daniel E.; Rörig, Aljoscha; Rouzée, Arnaud; Vallance, Claire; Ziaee, Farzaneh; Rolles, Daniel; Burt, Michael
    The predissociation dynamics of the 6s (B2E) Rydberg state of gas-phase CH3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previous © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK
  • Item
    Publisher Correction: Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source (Nature communications (2017) 8 1 (493))
    ([London] : Nature Publishing Group UK, 2018) Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; Vrakking, Marc J.; Fennel, Thomas; Rouzée, Arnaud
    In the original version of this Article, the affiliation for Luca Poletto was incorrectly given as 'European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Hamburg, Germany', instead of the correct 'CNR, Istituto di Fotonica e Nanotecnologie Padova, Via Trasea 7, 35131 Padova, Italy'. This has now been corrected in both the PDF and HTML versions of the Article.
  • Item
    Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source
    ([London] : Nature Publishing Group UK, 2017) Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J. Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud
    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-Angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.
  • Item
    Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser
    ([Bad Honnef] : Dt. Physikalische Ges., 2017-04-10) Savelyev, Evgeny; Boll, Rebecca; Bomme, Cédric; Schirmel, Nora; Redlin, Harald; Erk, Benjamin; Düsterer, Stefan; Müller, Erland; Höppner, Hauke; Toleikis, Sven; Müller, Jost; Kristin Czwalinna, Marie; Treusch, Rolf; Kierspel, Thomas; Mullins, Terence; Trippel, Sebastian; Wiese, Joss; Küpper, Jochen; Brauβe, Felix; Krecinic, Faruk; Rouzée, Arnaud; Rudawski, Piotr; Johnsson, Per; Amini, Kasra; Lauer, Alexandra; Burt, Michael; Brouard, Mark; Christensen, Lauge; Thøgersen, Jan; Stapelfeldt, Henrik; Berrah, Nora; Müller, Maria; Ulmer, Anatoli; Techert, Simone; Rudenko, Artem; Rolles, Daniel
    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene (C6H3F2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. We discuss in detail the necessary data analysis steps and describe the origin of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.
  • Item
    Recombination dynamics of clusters in intense extreme-ultraviolet and near-infrared fields
    ([London] : IOP, 2015) Schütte, Bernd; Oelze, Tim; Krikunova, Maria; Arbeiter, Mathias; Fennel, Thomas; Vrakking, Marc J. J.; Rouzée, Arnaud
    We investigate electron-ion recombination processes in clusters exposed to intense extreme-ultraviolet (XUV) or near-infrared (NIR) pulses. Using the technique of reionization of excited atoms from recombination (REAR), recently introduced in Schütte et al (2014 Phys. Rev. Lett. 112 253401), a large population of excited atoms, which are formed in the nanoplasma during cluster expansion, is identified under both ionization conditions. For intense XUV ionization of clusters, we find that the significance of recombination increases for increasing cluster sizes. In addition, larger fragments are strongly affected by recombination as well, as shown for the case of dimers. We demonstrate that for mixed Ar–Xe clusters exposed to intense NIR pulses, excited atoms and ions are preferentially formed in the Xe core. As a result of electron-ion recombination, higher charge states of Xe are efficiently suppressed, leading to an overall reduced expansion speed of the cluster core in comparison to the shell.
  • Item
    Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization
    (Melville, NY : AIP Publishing LLC, 2018) Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W. L.; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca
    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.