Search Results

Now showing 1 - 3 of 3
  • Item
    Chemokine‐Capturing Wound Contact Layer Rescues Dermal Healing
    (Weinheim : Wiley-VCH, 2021) Schirmer, Lucas; Atallah, Passant; Freudenberg, Uwe; Werner, Carsten
    Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.
  • Item
    Amphiphilic Copolymers for Versatile, Facile, and In Situ Tunable Surface Biofunctionalization
    (Weinheim : Wiley-VCH, 2021) Ruland, André; Schenker, Saskia; Schirmer, Lucas; Friedrichs, Jens; Meinhardt, Andrea; Schwartz, Véronique B.; Kaiser, Nadine; Konradi, Rupert; MacDonald, William; Helmecke, Tina; Sikosana, Melissa K.L.N.; Valtin, Juliane; Hahn, Dominik; Renner, Lars D.; Werner, Carsten; Freudenberg, Uwe
    Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces. Fine-tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials-which is why they are referred to as "anchor polymers" (APs)-and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives-including cytokine-complexing glycosaminoglycans, cell-adhesion-mediating peptides and antimicrobials-APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo- and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof-of-concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP-functionalized surfaces.
  • Item
    Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain
    (Cambridge : Royal Soc. of Chemistry, 2020) Schirmer, Lucas; Hoornaert, Chloé; Le Blon, Debbie; Eigel, Dimitri; Neto, Catia; Gumbleton, Mark; Welzel, Petra B.; Rosser, Anne E.; Werner, Carsten; Ponsaerts, Peter; Newland, Ben
    Interleukin-13 (IL-13) drives cells of myeloid origin towards a more anti-inflammatory phenotype, but delivery to the brain remains problematic. Herein, we show that heparin-based cryogel microcarriers load high amounts of IL-13, releasing it slowly. Intra-striatal injection of loaded microcarriers caused local up-regulation of ARG1 in myeloid cells for pro-regenerative immunomodulation in the brain. © 2020 The Royal Society of Chemistry.