Search Results

Now showing 1 - 10 of 12
  • Item
    Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction
    ([London] : Nature Publishing Group UK, 2020) Li, Tianming; Bandari, Vineeth Kumar; Hantusch, Martin; Xin, Jianhui; Kuhrt, Robert; Ravishankar, Rachappa; Xu, Longqian; Zhang, Jidong; Knupfer, Martin; Zhu, Feng; Yan, Donghang; Schmidt, Oliver G.
    Considerable efforts have been made to realize nanoscale diodes based on single molecules or molecular ensembles for implementing the concept of molecular electronics. However, so far, functional molecular diodes have only been demonstrated in the very low alternating current frequency regime, which is partially due to their extremely low conductance and the poor degree of device integration. Here, we report about fully integrated rectifiers with microtubular soft-contacts, which are based on a molecularly thin organic heterojunction and are able to convert alternating current with a frequency of up to 10 MHz. The unidirectional current behavior of our devices originates mainly from the intrinsically different surfaces of the bottom planar and top microtubular Au electrodes while the excellent high frequency response benefits from the charge accumulation in the phthalocyanine molecular heterojunction, which not only improves the charge injection but also increases the carrier density.
  • Item
    Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-19) Bandari, Vineeth Kumar; Varadharajan, Lakshmi; Xu, Longqian; Jalil, Abdur Rehman; Devarajulu, Mirunalini; Siles, Pablo F.; Zhu, Feng; Schmidt, Oliver G.
    The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour
    ([London] : Nature Publishing Group UK, 2022) Li, Tianming; Hantusch, Martin; Qu, Jiang; Bandari, Vineeth Kumar; Knupfer, Martin; Zhu, Feng; Schmidt, Oliver G.
    Molecular devices constructed by sub-10 nm thick molecular layers are promising candidates for a new generation of integratable nanoelectronic applications. Here, we report integrated molecular devices based on ultrathin copper phthalocyanine/fullerene hybrid layers with microtubular soft-contacts, which exhibit process-programmable functionality switching between photomultiplication and memristive behaviour. The local electric field at the interface between the polymer bottom electrode and the enclosed molecular channels modulates the ionic-electronic charge interaction and hence determines the transition of the device function. When ions are not driven into the molecular channels at a low interface electric field, photogenerated holes are trapped as electronic space charges, resulting in photomultiplication with a high external quantum efficiency. Once mobile ions are polarized and accumulated as ionic space charges in the molecular channels at a high interface electric field, the molecular devices show ferroelectric-like memristive switching with remarkable resistive ON/OFF and rectification ratios.
  • Item
    Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks
    (Hoboken : Wiley, 2020) Li, Fei; Qu, Jiang; Li, Yang; Wang, Jinhui; Zhu, Minshen; Liu, Lixiang; Ge, Jin; Duan, Shengkai; Li, Tianming; Bandari, Vineeth Kumar; Huang, Ming; Zhu, Feng; Schmidt, Oliver G.
    High performance, flexibility, safety, and robust integration for micro‐supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy‐storage devices. However, repetitive photolithography processes in the fabrication of on‐chip electronic components including various photoresists, masks, and toxic etchants are often not well‐suited for industrial production. Here, a cost‐effective stamping strategy is developed for scalable and rapid preparation of graphene‐based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm−2 at a current of 0.5 mA and a high power density of 6 mW cm−2 at an energy density of 5 µWh cm−2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge–discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well‐defined arrangements. The efficient, rapid manufacturing of the graphene‐based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.
  • Item
    Nano energy for miniaturized systems
    (Amsterdam : Elsevier, 2021) Zhu, Minshen; Zhu, Feng; Schmidt, Oliver G.
    Skin mountable electronic devices are in a high-speed development at the crossroads of materials science, electronics, and computer science. Sophisticated functions, such as sensing, actuating, and computing, are integrated into a soft electronic device that can be firmly mounted to any place of human body. These advanced electronic devices are capable of yielding abilities for us whenever they are needed and even expanding our abilities beyond their natural limitations. Despite the great promise of skin mounted electronic devices, they still lack satisfactory power supplies that are safe and continuous. This Perspective discusses the prospects of the development of energy storage devices for the next generation skin mountable electronic devices based on their unique requirements on flexibility and miniaturized size.
  • Item
    Editorial for a special issue “Nano energy materials and devices for miniaturized electronics and smart systems”
    (Amsterdam : Elsevier, 2021) Zhu, Feng; Schmidt, Oliver G.
    [No abstract available]
  • Item
    A Novel Large-Scale, Multilayer, and Facilely Aligned Micropatterning Technique Based on Flexible and Reusable SU-8 Shadow Masks
    (Weinheim : Wiley, 2019) Moradi, Somayeh; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Schmidt, Oliver G.
    A simple method to fabricate flexible, mechanically robust, and reusable SU-8 shadow masks is demonstrated. This shadow mask technology has high pattern flexibility as various shapes with different dimensions can be created. The fabricated shadow masks are characterized in terms of the resolution, reusability, and capability of multilayer surface micropatterning. Fabrication of a new plastic photomask for the exposure process simplifies the shadow mask fabrication process and results in higher resolution in the shadow mask structures compared to the commercial chromium photomasks. For the multilayer surface micropatterning technology, a simple and fast alignment technique based on SU-8 pillars and without usage of any microscopic tools is reported. This unique method leads to a less complicated alignment process with the alignment accuracy of ≈2 µm. The proposed shadow mask technology can be easily employed for wafer-scale micropatterning process. The capability of fabricated SU-8 shadow masks in micropatterning on polymer thin films is evaluated by fabricating metallic contacts on poly(3,4-ethylenedioxythiophene) samples and electrical characterization. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives
    (Amsterdam : Elsevier, 2021) Li, Fei; Li, Yang; Qu, Jiang; Wang, Jinhui; Bandari, Vineeth Kumar; Zhu, Feng; Schmidt, Oliver G.
    The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components. Stamping micro-supercapacitors (MSCs) with planar interdigital configurations are considered as a promising candidate to meet the requirements. In this review, recent progress of the different stamping materials and various stamping technologies are first discussed. The merits of each material, manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized, respectively. Further insights on technical difficulties and scientific challenges are finally demonstrated, including the limited thickness of printed electrodes, poor overlay accuracy and printing resolution.
  • Item
    Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
    (Weinheim : Wiley-VCH, 2020) Moradi, Somayeh; Naz, Ehsan Saei Ghareh; Li, Guodong; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Wendrock, Horst; Schmidt, Oliver G.
    Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim