Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

(Metallo)porphyrins for potential materials science applications

2017-8-29, Smykalla, Lars, Mende, Carola, Fronk, Michael, Siles, Pablo F., Hietschold, Michael, Salvan, Georgeta, Zahn, Dietrich R.T., Schmidt, Oliver G., Rüffer, Tobias, Lang, Heinrich

The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.

Loading...
Thumbnail Image
Item

Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism

2020, Moradi, Somayeh, Naz, Ehsan Saei Ghareh, Li, Guodong, Bandari, Nooshin, Bandari, Vineeth Kumar, Zhu, Feng, Wendrock, Horst, Schmidt, Oliver G.

Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Perovskite Origami for Programmable Microtube Lasing

2021, Dong, Haiyun, Saggau, Christian Niclaas, Zhu, Minshen, Liang, Jie, Duan, Shengkai, Wang, Xiaoyu, Tang, Hongmei, Yin, Yin, Wang, Xiaoxia, Wang, Jiawei, Zhang, Chunhuan, Zhao, Yong Sheng, Ma, Libo, Schmidt, Oliver G.

Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

2016, Xi, Wang, Schmidt, Christine K., Sanchez, Samuel, Gracias, David H., Carazo-Salas, Rafael E., Butler, Richard, Lawrence, Nicola, Jackson, Stephen P., Schmidt, Oliver G.

In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo.

Loading...
Thumbnail Image
Item

Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins

2017-6-2, Al-Shewiki, Rasha K., Mende, Carola, Buschbeck, Roy, Siles, Pablo F., Schmidt, Oliver G., Rüffer, Tobias, Lang, Heinrich

Subsequent treatment of H2TPP(CO2H)4 (tetra(p-carboxylic acid phenyl)porphyrin, 1) with an excess of oxalyl chloride and HNR2 afforded H2TPP(C(O)NR2)4 (R = Me, 2; iPr, 3) with yields exceeding 80%. The porphyrins 2 and 3 could be converted to the corresponding metalloporphyrins MTPP(C(O)NR2)4 (R = Me/iPr for M = Zn (2a, 3a); Cu (2b, 3b); Ni (2c, 3c); Co (2d, 3d)) by the addition of 3 equiv of anhydrous MCl2 (M = Zn, Cu, Ni, Co) to dimethylformamide solutions of 2 and 3 at elevated temperatures. Metalloporphyrins 2a–d and 3a–d were obtained in yields exceeding 60% and have been, as well as 2 and 3, characterized by elemental analysis, electrospray ionization mass spectrometry (ESIMS) and IR and UV–vis spectroscopy. Porphyrins 2, 2a–d and 3, 3a–d are not suitable for organic molecular beam deposition (OMBD), which is attributed to their comparatively low thermal stability as determined by thermogravimetric analysis (TG) of selected representatives.

Loading...
Thumbnail Image
Item

Digital Electrochemistry for On-Chip Heterogeneous Material Integration

2021, Bao, Bin, Rivkin, Boris, Akbar, Farzin, Karnaushenko, Dmitriy D., Bandari, Vineeth Kumar, Teuerle, Laura, Becker, Christian, Baunack, Stefan, Karnaushenko, Daniil, Schmidt, Oliver G.

Many modern electronic applications rely on functional units arranged in an active-matrix integrated on a single chip. The active-matrix allows numerous identical device pixels to be addressed within a single system. However, next-generation electronics requires heterogeneous integration of dissimilar devices, where sensors, actuators, and display pixels sense and interact with the local environment. Heterogeneous material integration allows the reduction of size, increase of functionality, and enhancement of performance; however, it is challenging since front-end fabrication technologies in microelectronics put extremely high demands on materials, fabrication protocols, and processing environments. To overcome the obstacle in heterogeneous material integration, digital electrochemistry is explored here, which site-selectively carries out electrochemical processes to deposit and address electroactive materials within the pixel array. More specifically, an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFT) active-matrix is used to address pixels within the matrix and locally control electrochemical reactions for material growth and actuation. The digital electrochemistry procedure is studied in-depth by using polypyrrole (PPy) as a model material. Active-matrix-driven multicolored electrochromic patterns and actuator arrays are fabricated to demonstrate the capabilities of this approach for material integration. The approach can be extended to a broad range of materials and structures, opening up a new path for advanced heterogeneous microsystem integration.

Loading...
Thumbnail Image
Item

Mechanical Characterization of Compact Rolled-up Microtubes Using In Situ Scanning Electron Microscopy Nanoindentation and Finite Element Analysis

2021, Moradi, Somayeh, Jöhrmann, Nathanael, Karnaushenko, Dmitriy D., Zschenderlein, Uwe, Karnaushenko, Daniil, Wunderle, Bernhard, Schmidt, Oliver G.

Self-assembled Swiss-roll microstructures (SRMs) are widely explored to build up microelectronic devices such as capacitors, transistors, or inductors as well as sensors and lab-in-a-tube systems. These devices often need to be transferred to a special position on a microchip or printed circuit board for the final application. Such a device transfer is typically conducted by a pick-and-place process exerting enormous mechanical loads onto the 3D components that may cause catastrophic failure of the device. Herein, the mechanical deformation behavior of SRMs using experiments and simulations is investigated. SRMs using in situ scanning electron microscopy (SEM) combined with nanoindentation are characterized. This allows us to mimic and characterize mechanical loads as they occur in a pick-and-place process. The deformation response of SRMs depends on three geometrical factors, i.e., the number of windings, compactness of consecutive windings, and inner diameter of the microtube. Nonlinear finite element analysis (FEA) showing good agreement with experiments is performed. It is believed that the insights into the mechanical loading of 3D self-assembled architectures will lead to novel techniques suitable for a new generation of pick-and-place machines operating at the microscale. © 2021 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery

2021, Zhu, Minshen, Hu, Junping, Lu, Qiongqiong, Dong, Haiyun, Karnaushenko, Dmitriy D., Becker, Christian, Karnaushenko, Daniil, Li, Yang, Tang, Hongmei, Qu, Zhe, Ge, Jin, Schmidt, Oliver G.

Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo

2021, Aziz, Azaam, Holthof, Joost, Meyer, Sandra, Schmidt, Oliver G., Medina-Sánchez, Mariana

The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors’ signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations

2020, Zhu, Minshen, Wang, Xiaojie, Tang, Hongmei, Wang, Jiawei, Hao, Qi, Liu, Lixiang, Li, Yang, Zhang, Kai, Schmidt, Oliver G.

Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim