Search Results

Now showing 1 - 10 of 11
  • Item
    Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction
    (Basel : MDPI, 2023) Andleeb, Shaista; Wang, Xiaoyu; Dong, Haiyun; Valligatla, Sreeramulu; Saggau, Christian Niclaas; Ma, Libo; Schmidt, Oliver G.; Zhu, Feng
    Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.
  • Item
    Sperm Micromotors for Cargo Delivery through Flowing Blood
    (Washington, DC : American Chemical Society, 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Maitz, Manfred F.; Werner, Carsten; Schmidt, Oliver G.
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
  • Item
    A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery
    (Weinheim : Wiley-VCH, 2021) Zhu, Minshen; Hu, Junping; Lu, Qiongqiong; Dong, Haiyun; Karnaushenko, Dmitriy D.; Becker, Christian; Karnaushenko, Daniil; Li, Yang; Tang, Hongmei; Qu, Zhe; Ge, Jin; Schmidt, Oliver G.
    Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
    (Weinheim : Wiley-VCH, 2020) Moradi, Somayeh; Naz, Ehsan Saei Ghareh; Li, Guodong; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Wendrock, Horst; Schmidt, Oliver G.
    Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Digital Electrochemistry for On-Chip Heterogeneous Material Integration
    (Weinheim : Wiley-VCH, 2021) Bao, Bin; Rivkin, Boris; Akbar, Farzin; Karnaushenko, Dmitriy D.; Bandari, Vineeth Kumar; Teuerle, Laura; Becker, Christian; Baunack, Stefan; Karnaushenko, Daniil; Schmidt, Oliver G.
    Many modern electronic applications rely on functional units arranged in an active-matrix integrated on a single chip. The active-matrix allows numerous identical device pixels to be addressed within a single system. However, next-generation electronics requires heterogeneous integration of dissimilar devices, where sensors, actuators, and display pixels sense and interact with the local environment. Heterogeneous material integration allows the reduction of size, increase of functionality, and enhancement of performance; however, it is challenging since front-end fabrication technologies in microelectronics put extremely high demands on materials, fabrication protocols, and processing environments. To overcome the obstacle in heterogeneous material integration, digital electrochemistry is explored here, which site-selectively carries out electrochemical processes to deposit and address electroactive materials within the pixel array. More specifically, an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFT) active-matrix is used to address pixels within the matrix and locally control electrochemical reactions for material growth and actuation. The digital electrochemistry procedure is studied in-depth by using polypyrrole (PPy) as a model material. Active-matrix-driven multicolored electrochromic patterns and actuator arrays are fabricated to demonstrate the capabilities of this approach for material integration. The approach can be extended to a broad range of materials and structures, opening up a new path for advanced heterogeneous microsystem integration.
  • Item
    Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo
    (Weinheim : Wiley-VCH, 2021) Aziz, Azaam; Holthof, Joost; Meyer, Sandra; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors’ signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Perovskite Origami for Programmable Microtube Lasing
    (Weinheim : Wiley-VCH, 2021) Dong, Haiyun; Saggau, Christian Niclaas; Zhu, Minshen; Liang, Jie; Duan, Shengkai; Wang, Xiaoyu; Tang, Hongmei; Yin, Yin; Wang, Xiaoxia; Wang, Jiawei; Zhang, Chunhuan; Zhao, Yong Sheng; Ma, Libo; Schmidt, Oliver G.
    Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Mechanical Characterization of Compact Rolled-up Microtubes Using In Situ Scanning Electron Microscopy Nanoindentation and Finite Element Analysis
    (Weinheim : Wiley-VCH, 2021) Moradi, Somayeh; Jöhrmann, Nathanael; Karnaushenko, Dmitriy D.; Zschenderlein, Uwe; Karnaushenko, Daniil; Wunderle, Bernhard; Schmidt, Oliver G.
    Self-assembled Swiss-roll microstructures (SRMs) are widely explored to build up microelectronic devices such as capacitors, transistors, or inductors as well as sensors and lab-in-a-tube systems. These devices often need to be transferred to a special position on a microchip or printed circuit board for the final application. Such a device transfer is typically conducted by a pick-and-place process exerting enormous mechanical loads onto the 3D components that may cause catastrophic failure of the device. Herein, the mechanical deformation behavior of SRMs using experiments and simulations is investigated. SRMs using in situ scanning electron microscopy (SEM) combined with nanoindentation are characterized. This allows us to mimic and characterize mechanical loads as they occur in a pick-and-place process. The deformation response of SRMs depends on three geometrical factors, i.e., the number of windings, compactness of consecutive windings, and inner diameter of the microtube. Nonlinear finite element analysis (FEA) showing good agreement with experiments is performed. It is believed that the insights into the mechanical loading of 3D self-assembled architectures will lead to novel techniques suitable for a new generation of pick-and-place machines operating at the microscale. © 2021 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH
  • Item
    Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations
    (Weinheim : Wiley-VCH, 2020) Zhu, Minshen; Wang, Xiaojie; Tang, Hongmei; Wang, Jiawei; Hao, Qi; Liu, Lixiang; Li, Yang; Zhang, Kai; Schmidt, Oliver G.
    Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility
    (Weinheim : Wiley-VCH, 2021) Shi, Huanhuan; Fu, Shuai; Liu, Yannan; Neumann, Christof; Wang, Mingchao; Dong, Haiyun; Kot, Piotr; Bonn, Mischa; Wang, Hai I.; Turchanin, Andrey; Schmidt, Oliver G.; Shaygan Nia, Ali; Yang, Sheng; Feng, Xinliang
    Overcoming the intrinsic instability and preserving unique electronic properties are key challenges for the practical applications of black phosphorus (BP) under ambient conditions. Here, it is demonstrated that molecular heterostructures of BP and hexaazatriphenylene derivatives (BP/HATs) enable improved environmental stability and charge transport properties. The strong interfacial coupling and charge transfer between the HATs and the BP lattice decrease the surface electron density and protect BP sheets from oxidation, resulting in an excellent ambient lifetime of up to 21 d. Importantly, HATs increase the charge scattering time of BP, contributing to an improved carrier mobility of 97 cm2 V-1 s-1 , almost three times of the pristine BP films, based on noninvasive THz spectroscopic studies. The film mobility is an order of magnitude larger than previously reported values in exfoliated 2D materials. The strategy opens up new avenues for versatile applications of BP sheets and provides an effective method for tuning the physicochemical properties of other air-sensitive 2D semiconductors.