Search Results

Now showing 1 - 9 of 9
  • Item
    System-Engineered Miniaturized Robots: From Structure to Intelligence
    (Weinheim : Wiley-VCH Verlag, 2021) Bandari, Vineeth Kumar; Schmidt, Oliver G.
    The development of small machines, once envisioned by Feynman decades ago, has stimulated significant research in materials science, robotics, and computer science. Over the past years, the field of miniaturized robotics has rapidly expanded with many research groups contributing to the numerous challenges inherent to this field. Smart materials have played a particularly important role as they have imparted miniaturized robots with new functionalities and distinct capabilities. However, despite all efforts and many available soft materials and innovative technologies, a fully autonomous system-engineered miniaturized robot (SEMR) of any practical relevance has not been developed yet. In this review, the foundation of SEMRs is discussed and six main areas (structure, motion, sensing, actuation, energy, and intelligence) which require particular efforts to push the frontiers of SEMRs further are identified. During the past decade, miniaturized robotic research has mainly relied on simplicity in design, and fabrication. A careful examination of current SEMRs that are physically, mechanically, and electrically engineered shows that they fall short in many ways concerning miniaturization, full-scale integration, and self-sufficiency. Some of these issues have been identified in this review. Some are inevitably yet to be explored, thus, allowing to set the stage for the next generation of intelligent, and autonomously operating SEMRs.
  • Item
    Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, 2022) Bao, Bin; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.; Song, Yanlin; Karnaushenko, Daniil
    A variety of modern applications including soft robotics, prosthetics, and health monitoring devices that cover electronic skins (e-skins), wearables as well as implants have been developed within the last two decades to bridge the gap between artificial and biological systems. During this development, high-density integration of various sensing modalities into flexible electronic devices becomes vitally important to improve the perception and interaction of the human bodies and robotic appliances with external environment. As a key component in flexible electronics, the flexible thin-film transistors (TFTs) have seen significant advances, allowing for building flexible active matrices. The flexible active matrices have been integrated with distributed arrays of sensing elements, enabling the detection of signals over a large area. The integration of sensors within pixels of flexible active matrices has brought the application scenarios to a higher level of sophistication with many advanced functionalities. Herein, recent progress in the active matrix flexible sensory systems is reviewed. The materials used to construct the semiconductor channels, the dielectric layers, and the flexible substrates for the active matrices are summarized. The pixel designs and fabrication strategies for the active matrix flexible sensory systems are briefly discussed. The applications of the flexible sensory systems are exemplified by reviewing pressure sensors, temperature sensors, photodetectors, magnetic sensors, and biosignal sensors. At the end, the recent development is summarized and the vision on the further advances of flexible active matrix sensory systems is provided.
  • Item
    Perovskite Origami for Programmable Microtube Lasing
    (Weinheim : Wiley-VCH, 2021) Dong, Haiyun; Saggau, Christian Niclaas; Zhu, Minshen; Liang, Jie; Duan, Shengkai; Wang, Xiaoyu; Tang, Hongmei; Yin, Yin; Wang, Xiaoxia; Wang, Jiawei; Zhang, Chunhuan; Zhao, Yong Sheng; Ma, Libo; Schmidt, Oliver G.
    Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
  • Item
    Recent Progress on Optoplasmonic Whispering-Gallery-Mode Microcavities
    (Weinheim : Wiley-VCH, 2021) Chen, Yongpeng; Yin, Yin; Ma, Libo; Schmidt, Oliver G.
    Optoplasmonic whispering-gallery-mode (WGM) microcavities, consisting of plasmonic nanostructures and optical microcavities, provide excellent platforms for exploring fundamental mechanisms as well as facilitating novel optoplasmonic applications. These integrated systems support hybrid modes with both subwavelength mode confinement and high-quality factor which do not exist in either pure optical WGM microcavities or plasmonic resonators. In this progress report, geometric designs and fabrication strategies of optoplasmonic microcavities, which efficiently bridge the interaction between resonant light and plasmonic resonances, are reviewed in detail. Three types of hybrid modes in the optoplasmonic microcavities, that is, surface-plasmon-polariton whispering-gallery modes, hybrid photon–plasmon whispering-gallery modes, and heterostructured metal–dielectric whispering-gallery modes, are considered. These modes are characterized by a largely enhanced evanescent field that is referred to as a plasmon-type field in hybrid whispering-gallery modes. Moreover, the coupling effect between localized surface plasmon resonances and whispering-gallery modes is summarized. The underlying coupling mechanisms and their influence on mode shifts, Q factor, mode splitting, and line shapes of the whispering-gallery modes are discussed. Applications based on optoplasmonic WGM microcavities including enhanced sensing, nanolasing, and free-space coupling are highlighted, followed by an outlook of the opportunities and challenges in developing large-scale on-chip integrated optoplasmonic systems.
  • Item
    Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor
    (Berlin ; Heidelberg [u.a.] : Springer, 2021) Wang, Yuye; Zeng, Shuwen; Crunteanu, Aurelian; Xie, Zhenming; Humbert, Georges; Ma, Libo; Wei, Yuanyuan; Brunel, Aude; Bessette, Barbara; Orlianges, Jean-Christophe; Lalloué, Fabrice; Schmidt, Oliver G.; Yu, Nanfang; Ho, Ho-Pui
    Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 μm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10–15 mol L−1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics.
  • Item
    Shape-Controlled Flexible Microelectronics Facilitated by Integrated Sensors and Conductive Polymer Actuators
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KGaA, 2021) Rivkin, Boris; Becker, Christian; Akbar, Farzin; Ravishankar, Rachappa; Karnaushenko, Dmitriy; Naumann, Ronald; Mirhajivarzaneh, Aaleh; Medina-Sánchez, Mariana; Karnaushenko, Daniil; Schmidt, Oliver G.
    The next generation of biomedical tools requires reshapeable electronics to closely interface with biological tissues. This will offer unique mechanical properties and the ability to conform to irregular geometries while being robust and lightweight. Such devices can be achieved with soft materials and thin-film structures that are able to reshape on demand. However, reshaping at the submillimeter scale remains a challenging task. Herein, shape-controlled microscale devices are demonstrated that integrate electronic sensors and electroactive polymer actuators. The fast and biocompatible actuators are capable of actively reshaping the device into flat or curved geometries. The curvature and position of the devices are monitored with strain or magnetic sensors. The sensor signals are used in a closed feedback loop to control the actuators. The devices are wafer-scale microfabricated resulting in multiple functional units capable of grasping, holding, and releasing biological tissues, as demonstrated with a neuronal bundle.
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Impedimetric Microfluidic Sensor-in-a-Tube for Label-Free Immune Cell Analysis
    (Weinheim : Wiley-VCH, 2021) Egunov, Aleksandr I.; Dou, Zehua; Karnaushenko, Dmitriy D.; Hebenstreit, Franziska; Kretschmann, Nicole; Akgün, Katja; Ziemssen, Tjalf; Karnaushenko, Daniil; Medina-Sánchez, Mariana; Schmidt, Oliver G.
    Analytical platforms based on impedance spectroscopy are promising for non-invasive and label-free analysis of single cells as well as of their extracellular matrix, being essential to understand cell function in the presence of certain diseases. Here, an innovative rolled-up impedimetric microfulidic sensor, called sensor-in-a-tube, is introduced for the simultaneous analysis of single human monocytes CD14+ and their extracellular medium upon liposaccharides (LPS)-mediated activation. In particular, rolled-up platinum microelectrodes are integrated within for the static and dynamic (in-flow) detection of cells and their surrounding medium (containing expressed cytokines) over an excitation frequency range from 102 to 5 × 106 Hz. The correspondence between cell activation stages and the electrical properties of the cell surrounding medium have been detected by electrical impedance spectroscopy in dynamic mode without employing electrode surface functionalization or labeling. The designed sensor-in-a-tube platform is shown as a sensitive and reliable tool for precise single cell analysis toward immune-deficient diseases diagnosis.
  • Item
    Switching Propulsion Mechanisms of Tubular Catalytic Micromotors
    (Weinheim : Wiley-VCH, 2021) Wrede, Paul; Medina-Sánchez, Mariana; Fomin, Vladimir M.; Schmidt, Oliver G.
    Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.