Search Results

Now showing 1 - 5 of 5
  • Item
    Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-19) Bandari, Vineeth Kumar; Varadharajan, Lakshmi; Xu, Longqian; Jalil, Abdur Rehman; Devarajulu, Mirunalini; Siles, Pablo F.; Zhu, Feng; Schmidt, Oliver G.
    The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias
  • Item
    Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Börner, Martin; Blömer, Laura; Kischel, Marcus; Richter, Peter; Salvan, Georgeta; Zahn, Dietrich R. T.; Siles, Pablo F.; Fuentes, Maria E. N.; Bufon, Carlos C. B.; Grimm, Daniel; Schmidt, Oliver G.; Breite, Daniel; Abel, Bernd; Kersting, Berthold
    The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application in various fields, including molecular spintronics. In this work, the synthesis of mixed-ligand complexes of the type [NiII2L(L’)](ClO4), where L represents a 24-membered macrocyclic hexaazadithiophenolate ligand and L’ is a ω-mercapto-carboxylato ligand (L’ = HS(CH2)5CO2− (6), HS(CH2)10CO2− (7), or HS(C6H4)2CO2− (8)), and their ability to adsorb on gold surfaces is reported. Besides elemental analysis, IR spectroscopy, electrospray ionization mass spectrometry (ESIMS), UV–vis spectroscopy, and X-ray crystallography (for 6 and 7), the compounds were also studied by temperature-dependent magnetic susceptibility measurements (for 7 and 8) and (broken symmetry) density functional theory (DFT) calculations. An S = 2 ground state is demonstrated by temperature-dependent susceptibility and magnetization measurements, achieved by ferromagnetic coupling between the spins of the Ni(II) ions in 7 (J = +22.3 cm−1) and 8 (J = +20.8 cm−1; H = −2JS1S2). The reactivity of complexes 6–8 is reminiscent of that of pure thiolato ligands, which readily chemisorb on Au surfaces as verified by contact angle, atomic force microscopy (AFM) and spectroscopic ellipsometry measurements. The large [Ni2L] tail groups, however, prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported.
  • Item
    Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Robaschik, Peter; Siles, Pablo F.; Bülz, Daniel; Richter, Peter; Monecke, Manuel; Fronk, Michael; Klyatskaya, Svetlana; Grimm, Daniel; Schmidt, Oliver G.; Ruben, Mario; Zahn, Dietrich R.T.; Salvan, Georgeta
    The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFMbased electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.
  • Item
    Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-2) Al-Shewiki, Rasha K.; Mende, Carola; Buschbeck, Roy; Siles, Pablo F.; Schmidt, Oliver G.; Rüffer, Tobias; Lang, Heinrich
    Subsequent treatment of H2TPP(CO2H)4 (tetra(p-carboxylic acid phenyl)porphyrin, 1) with an excess of oxalyl chloride and HNR2 afforded H2TPP(C(O)NR2)4 (R = Me, 2; iPr, 3) with yields exceeding 80%. The porphyrins 2 and 3 could be converted to the corresponding metalloporphyrins MTPP(C(O)NR2)4 (R = Me/iPr for M = Zn (2a, 3a); Cu (2b, 3b); Ni (2c, 3c); Co (2d, 3d)) by the addition of 3 equiv of anhydrous MCl2 (M = Zn, Cu, Ni, Co) to dimethylformamide solutions of 2 and 3 at elevated temperatures. Metalloporphyrins 2a–d and 3a–d were obtained in yields exceeding 60% and have been, as well as 2 and 3, characterized by elemental analysis, electrospray ionization mass spectrometry (ESIMS) and IR and UV–vis spectroscopy. Porphyrins 2, 2a–d and 3, 3a–d are not suitable for organic molecular beam deposition (OMBD), which is attributed to their comparatively low thermal stability as determined by thermogravimetric analysis (TG) of selected representatives.
  • Item
    (Metallo)porphyrins for potential materials science applications
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-8-29) Smykalla, Lars; Mende, Carola; Fronk, Michael; Siles, Pablo F.; Hietschold, Michael; Salvan, Georgeta; Zahn, Dietrich R.T.; Schmidt, Oliver G.; Rüffer, Tobias; Lang, Heinrich
    The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.