Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids
    (Cambridge : Royal Society of Chemistry, 2015) Ewert, Julia K.; Weingarth, Daniel; Denner, Christine; Friedrich, Martin; Zeiger, Marco; Schreiber, Anna; Jäckel, Nicolas; Presser, Volker; Kempe, Rhett
    Supercapacitors combine efficient electrical energy storage and performance stability based on fast electrosorption of electrolyte ions at charged interfaces. They are a central element of existing and emerging energy concepts. A better understanding of capacitance enhancement options is essential to exploit the full potential of supercapacitors. Here, we report a novel hierarchically structured N-doped carbon material and a significant capacitance enhancement for a specific ionic liquid. Our studies indicate that matching of the electrode material and the ionic liquid specifically leads to a constant normalized resistance of the electrode material (voltage window up to ±1 V vs. carbon) and a significant enhancement of the specific capacitance. Such effects are not seen for standard organic electrolytes, non-matched ionic liquids, or non-N-doped carbons. A higher N-doping of the electrode material improves the symmetric full cell capacitance of the match and considerably increases its long-term stability at +3 V cell voltage. This novel observance of enhanced specific capacitance for N-doped carbons with matched ionic liquid may enable a new platform for developing supercapacitors with enhanced energy storage capacity.
  • Item
    Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte
    (Amsterdam : Elsevier, 2016) Jäckel, Nicolas; Weingarth, Daniel; Schreiber, Anna; Krüner, Benjamin; Zeiger, Marco; Tolosa Rodriguez, Aura Monserrat; Aslan, Mesut; Presser, Volker
    In this study, we investigate two different activated carbons and four conductive additive materials, all produced in industrial scale from commercial suppliers. The two activated carbons differed in porosity: one with a narrow microporous pore size distribution, the other showed a broader micro-mesoporous pore structure. Electrochemical benchmarking was done in one molar tetraethylammonium tetrafluoroborate in acetonitrile. Comprehensive structural, chemical, and electrical characterization was carried out by varied techniques. This way, we correlate the electrochemical performance with composite electrode properties, such as surface area, pore volume, electrical conductivity, and mass loading for different admixtures of conductive additives to activated carbon. The electrochemical rate handling (from 0.1 A g−1 to 10 A g−1) and long-time stability testing via voltage floating (100 h at 2.7 V cell voltage) show the influence of functional surface groups on carbon materials and the role of percolation of additive particles.