Search Results

Now showing 1 - 3 of 3
  • Item
    Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids
    (Cambridge : Royal Society of Chemistry, 2015) Ewert, Julia K.; Weingarth, Daniel; Denner, Christine; Friedrich, Martin; Zeiger, Marco; Schreiber, Anna; Jäckel, Nicolas; Presser, Volker; Kempe, Rhett
    Supercapacitors combine efficient electrical energy storage and performance stability based on fast electrosorption of electrolyte ions at charged interfaces. They are a central element of existing and emerging energy concepts. A better understanding of capacitance enhancement options is essential to exploit the full potential of supercapacitors. Here, we report a novel hierarchically structured N-doped carbon material and a significant capacitance enhancement for a specific ionic liquid. Our studies indicate that matching of the electrode material and the ionic liquid specifically leads to a constant normalized resistance of the electrode material (voltage window up to ±1 V vs. carbon) and a significant enhancement of the specific capacitance. Such effects are not seen for standard organic electrolytes, non-matched ionic liquids, or non-N-doped carbons. A higher N-doping of the electrode material improves the symmetric full cell capacitance of the match and considerably increases its long-term stability at +3 V cell voltage. This novel observance of enhanced specific capacitance for N-doped carbons with matched ionic liquid may enable a new platform for developing supercapacitors with enhanced energy storage capacity.
  • Item
    Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte
    (Amsterdam : Elsevier, 2016) Jäckel, Nicolas; Weingarth, Daniel; Schreiber, Anna; Krüner, Benjamin; Zeiger, Marco; Tolosa Rodriguez, Aura Monserrat; Aslan, Mesut; Presser, Volker
    In this study, we investigate two different activated carbons and four conductive additive materials, all produced in industrial scale from commercial suppliers. The two activated carbons differed in porosity: one with a narrow microporous pore size distribution, the other showed a broader micro-mesoporous pore structure. Electrochemical benchmarking was done in one molar tetraethylammonium tetrafluoroborate in acetonitrile. Comprehensive structural, chemical, and electrical characterization was carried out by varied techniques. This way, we correlate the electrochemical performance with composite electrode properties, such as surface area, pore volume, electrical conductivity, and mass loading for different admixtures of conductive additives to activated carbon. The electrochemical rate handling (from 0.1 A g−1 to 10 A g−1) and long-time stability testing via voltage floating (100 h at 2.7 V cell voltage) show the influence of functional surface groups on carbon materials and the role of percolation of additive particles.
  • Item
    Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes
    (Cambridge : Royal Society of Chemistry, 2016) Zeiger, Marco; Fleischmann, Simon; Krüner, Benjamin; Tolosa, Aura; Bechtel, Stephan; Baltes, Mathias; Schreiber, Anna; Moroni, Riko; Vierrath, Severin; Thiele, Simon; Presser, Volker
    Manganese oxide presents very promising electrochemical properties as an electrode material in supercapacitors, but there remain important open questions to guide further development of the complex manganese oxide/carbon/electrolyte system. Our work addresses specifically the influence of carbon ordering and the difference between outer and inner porosity of carbon particles for the application in aqueous 1 M Na2SO4 and 1 M LiClO4 in acetonitrile. Birnessite-type manganese oxide was hydrothermally hybridized on two kinds of carbon onions with only outer surface area and different electrical conductivity, and conventional activated carbon with a high inner porosity. Carbon onions with a high degree of carbon ordering, high conductivity, and high outer surface area were identified as the most promising material, yielding 179 F g−1. Pore blocking in activated carbon yields unfavorable electrochemical performances. The highest specific energy of 16.4 W h kg−1 was measured for a symmetric full-cell arrangement of manganese oxide coated high temperature carbon onions in the organic electrolyte. High stability during 10 000 cycles was achieved for asymmetric full-cells, which proved as a facile way to enhance the electrochemical performance stability.