Search Results

Now showing 1 - 4 of 4
  • Item
    Longtime behavior for a generalized Cahn-Hilliard system with fractional operators
    (Messina : Accademia Peloritana dei Pericolanti, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this contribution, we deal with the longtime behavior of the solutions to the fractional variant of the Cahn-Hilliard system, with possibly singular potentials, that we have recently investigated in the paper Well-posedness and regularity for a generalized fractional Cahn-Hilliard system. More precisely, we study the ω-limit of the phase parameter y and characterize it completely. Our characterization depends on the first eigenvalues λ1≥0 of one of the operators involved: if λ1>0, then the chemical potential μ vanishes at infinity and every element yω of the ω-limit is a stationary solution to the phase equation; if instead λ1=0, then every element yω of the ω-limit satisfies a problem containing a real function μ∞ related to the chemical potential μ. Such a function μ∞ is nonunique and time dependent, in general, as we show by an example. However, we give sufficient conditions for μ∞ to be uniquely determined and constant.
  • Item
    An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators
    (Basel : Springer, 2021) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers A2r and B2σ (in the spectral sense) of general linear operators A and B, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L2(Ω), for some bounded and smooth domain Ω⊂R3, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the operator B2σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.
  • Item
    Optimal control of a phase field system of Caginalp type with fractional operators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In their recent work ``Well-posedness, regularity and asymptotic analyses for a fractional phase field system'' (Asymptot. Anal. 114 (2019), 93--128), two of the present authors have studied phase field systems of Caginalp type, which model nonconserved, nonisothermal phase transitions and in which the occurring diffusional operators are given by fractional versions in the spectral sense of unbounded, monotone, selfadjoint, linear operators having compact resolvents. In this paper, we complement this analysis by investigating distributed optimal control problems for such systems. It is shown that the associated control-to-state operator is Fréchet differentiable between suitable Banach spaces, and meaningful first-order necessary optimality conditions are derived in terms of a variational inequality and the associated adjoint state variables.
  • Item
    An asymptotic analysis for a generalized Cahn--Hilliard system with fractional operators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In a recent paper the same authors have proved existence, uniqueness and regularity results for a class of viscous and nonviscous Cahn--Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers in the spectral sense of general linear operators, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space of square-integrable functions on a bounded and smooth three-dimensional domain, and have compact resolvents. Here, for the case of the viscous system, we analyze the asymptotic behavior of the solution as the fractional power coefficient of the second operator tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of the second operator appears.