Search Results

Now showing 1 - 10 of 33
  • Item
    A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions
    (Berlin ; Boston, Mass. : de Gruyter, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn–Hilliard equations with possibly singular potentialsand dynamic boundary conditions is studied and rst-order necessary conditions for optimality are proved.
  • Item
    Distributed optimal control of a nonstandard nonlocal phase field system
    (Springfield, MO : AIMS Press, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.
  • Item
    A distributed control problem for a fractional tumor growth model
    (Basel : MDPI, 2019) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three self-adjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn-Hilliard type phase field system modeling tumor growth that has been proposed by Hawkins-Daarud, van der Zee and Oden. The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in a recent work by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type. © 2019 by the authors.
  • Item
    Constrained evolution for a quasilinear parabolic equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the CauchyNeumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set K of L2 (Omega). Then, we consider convex sets of obstacle or double-obstacle type, and we can act on the factor of the feedback control in order to be able to reach the convex set within a finite time, by proving rigorously this property.
  • Item
    Optimal control of a phase field system modelling tumor growth with chemotaxis and singular potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Colli, Pierluigi; Signori, Andrea; Sprekels, Jürgen
    A distributed optimal control problem for an extended model of phase field type for tumor growth is addressed. In this model, the chemotaxis effects are also taken into account. The control is realized by two control variables that design the dispensation of some drugs to the patient. The cost functional is of tracking type, whereas the potential setting has been kept quite general in order to allow regular and singular potentials to be considered. In this direction, some relaxation terms have been introduced in the system. We show the well-posedness of the state system, the Fréchet differentiability of the control-to-state operator in a suitable functional analytic framework, and, lastly, we characterize the first-order necessary conditions of optimality in terms of a variational inequality involving the adjoint variables.
  • Item
    Optimal distributed control of a diffuse interface model of tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by HawkinsDaruud et al. in [25]. The model consists of a CahnHilliard equation for the tumor cell fraction 'coupled to a reaction-diffusion equation for a function phi representing the nutrientrich extracellular water volume fraction. The distributed control u monitors as a right-hand side the equation for sigma and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.
  • Item
    Distributed optimal control of a nonstandard nonlocal phase field system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.
  • Item
    Optimal control of semiconductor melts by traveling magnetic fields
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Nestler, Peter; Schlömer, Nico; Klein, Olaf; Sprekels, Jürgen; Tröltzsch, Fredi
    In this paper, the optimal control of traveling magnetic fields in a process of crystal growth from the melt of semiconductor materials is considered. As controls, the phase shifts of the voltage in the coils of a heater-magnet module are employed to generate Lorentz forces for stirring the crystal melt in an optimal way. By the use of a new industrial heater-magnet module, the Lorentz forces have a stronger impact on the melt than in earlier technologies. It is known from experiments that during the growth process temperature oscillations with respect to time occur in the neighborhood of the solid-liquid interface. These oscillations may strongly influence the quality of the growing single crystal. As it seems to be impossible to suppress them completely, the main goal of optimization has to be less ambitious, namely, one tries to achieve oscillations that have a small amplitude and a frequency which is sufficiently high such that the solid-liquid interface does not have enough time to react to the oscillations. In our approach, we control the oscillations at a finite number of selected points in the neighborhood of the solidification front. The system dynamics is modeled by a coupled system of partial differential equations that account for instationary heat condution, turbulent melt flow, and magnetic field. We report on numerical methods for solving this system and for the optimization of the whole process. Different objective functionals are tested to reach the goal of optimization.
  • Item
    Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    This paper is concerned with a phase field system of Cahn-Hilliard type that is related to a tumor growth model and consists of three equations in gianni terms of the variables order parameter, chemical potential and nutrient concentration. This system has been investigated in the recent papers citeCGH and citeCGRS gianni from the viewpoint of well-posedness, long time bhv and asymptotic convergence as two positive viscosity coefficients tend to zero at the same time. Here, we continue the analysis performed in citeCGRS by showing two independent sets of results as just one of the coefficents tends to zero, the other remaining fixed. We prove convergence results, uniqueness of solutions to the two resulting limit problems, and suitable error estimates
  • Item
    Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn--Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in [Colli-Gilardi-Hilhorst 2015], letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.