Search Results

Now showing 1 - 8 of 8
  • Item
    A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first-order necessary conditions for optimality are proved.
  • Item
    On the Cahn-Hilliard equation with dynamic boundary conditions and a dominating boundary potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    The Cahn-Hilliard and viscous Cahn-Hilliard equations with singular and possibly nonsmooth potentials and dynamic boundary condition are considered and some well-posedness and regularity results are proved.
  • Item
    Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in 3D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Rocca, Elisabetta; Sprekels, Jürgen
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn-Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: The state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem.
  • Item
    Second-order analysis of a boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary condition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Farshbaf Shaker, Mohammad Hassan; Gilardi, Gianni; Sprekels, Jürgen
    In this paper we establish second-order sufficient optimality conditions for a boundary control problem that has been introduced and studied by three of the authors in the preprint arXiv:1407.3916. This control problem regards the viscous Cahn-Hilliard equation with possibly singular potentials and dynamic boundary conditions.
  • Item
    A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the viscous Cahn-Hilliard equations with possibly singular potentials and dynamic boundary conditions is studied and first order necessary conditions for optimality are proved.
  • Item
    Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Frigeri, Sergio; Grasselli, Maurizio; Sprekels, Jürgen
    In this paper, we consider a two-dimensional diffuse interface model for the phase separation of an incompressible and isothermal binary fluid mixture with matched densities. This model consists of the NavierStokes equations, nonlinearly coupled with a convective nonlocal CahnHilliard equation. The system rules the evolution of the (volume-averaged) velocity u of the mixture and the (relative) concentration difference ' of the two phases. The aim of this work is to study an optimal control problem for such a system, the control being a time-dependent external force v acting on the fluid. We first prove the existence of an optimal control for a given tracking type cost functional. Then we study the differentiability properties of the control-to-state map v 7! [u; '], and we establish first-order necessary optimality conditions. These results generalize the ones obtained by the first and the third authors jointly with E. Rocca in [19]. There the authors assumed a constant mobility and a regular potential with polynomially controlled growth. Here, we analyze the physically more relevant case of a degenerate mobility and a singular (e.g., logarithmic) potential. This is made possible by the existence of a unique strong solution which was recently proved by the authors and C. G. Gal in [14].
  • Item
    Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in 2D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio Pietro; Rocca, Elisabetta; Sprekels, Jürgen
    We study a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids coupling the Navier-Stokes system with a convective nonlocal Cahn-Hilliard equation in two dimensions of space. We apply recently proved well-posedness and regularity results in order to establish existence of optimal controls as well as first-order necessary optimality conditions for an associated optimal control problem in which a distributed control is applied to the fluid flow.
  • Item
    On an application of Tikhonovs fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006) 105-118. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter p and the chemical potential my. Singular contributions to the local free energy in the form of logarithmic or ouble-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonovs fixed point theorem in a rather unusual separable and reflexive Banach space.