Search Results

Now showing 1 - 3 of 3
  • Item
    Narrowing of the far field in spatially modulated edge-emitting broad area semiconductor amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Radziunas, Mindaugas; Herrero, Ramon; Botey, Muriel; Staliunas, Kestutis
    We perform a detailed theoretical analysis of the far field narrowing in broad-area edgeemitting semiconductor amplifiers that are electrically injected through the contacts periodically modulated in both, longitudinal and transverse, directions. The beam propagation properties within the semiconductor amplifier are explored by a (1+2)-dimensional traveling wave model and its coupled mode approximation. Assuming a weak field regime, we analyze the impact of different parameters and modulation geometry on the narrowing of the principal far field component.
  • Item
    Beam shaping mechanism in spatially modulated edge emitting broad area semiconductor amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Radziunas, Mindaugas; Botey, Muriel; Herrero, Ramon; Staliunas, Kestutis
    We investigate beam shaping in broad area semiconductor amplifiers induced by a periodic modulation of the pump on a scale of several microns. The study is performed by solving numerically a (2+1)-dimensional model for the semiconductor amplifier. We show that, under realistic conditions, the anisotropic gain induced by the pump periodicity can show narrow angular profile of enhanced gain of less than one degree, providing an intrinsic filtering mechanism and eventually improving the spatial beam quality.
  • Item
    Spatial "rocking" for improving the spatial quality of the beam of broad area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Radziunas, Mindaugas; Staliunas, Kestutis
    The spatial ``rocking'' is a dynamical effect converting a phase-invariant oscillatory system into a phase-bistable one, where the average phase of the system locks to one of two values differing by pi. We demonstrate theoretically the spatial rocking in experimentally accessible and practically relevant systems -- the broad area semiconductor lasers. By numerical integration of the laser model equations we show the phase bistability of the optical fields and explore the bistability area in parameter space. We also predict the spatial patterns, such as phase domain walls and phase solitons, which are characteristic for the phase-bistable spatially extended pattern forming systems.