Search Results

Now showing 1 - 3 of 3
  • Item
    Stable laser-ion acceleration in the light sail regime
    (College Park : American Institute of Physics Inc., 2013) Steinke, S.; Hilz, P.; Schnürer, M.; Priebe, G.; Bränzel, J.; Abicht, F.; Kiefer, D.; Kreuzer, C.; Ostermayr, T.; Schreiber, J.; Andreev, A.A.; Yu, T.P.; Pukhov, A.; Sandner, W.
    We present experimental results on ion acceleration with circularly polarized, ultrahigh contrast laser pulses focused to peak intensities of 5×1019 W cm-2 onto polymer targets of a few 10 nanometer thickness. We observed spatially and energetically separated protons and carbon ions that accumulate to pronounced peaks around 2 MeV containing as much as 6.5% of the laser energy. Based on particle-in-cell simulation, we illustrate that an early separation of heavier carbon ions and lighter protons creates a stable interface that is maintained beyond the end of the radiation pressure dominated acceleration process.
  • Item
    A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams
    (College Park, MD : Institute of Physics Publishing, 2010) Pfotenhauer, S.M.; Jäckel, O.; Polz, J.; Steinke, S.; Schlenvoigt, H.-P.; Heymann, J.; Robinson, A.P.L.; Kaluza, M.C.
    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser-plasma interaction on a thin foil target is spectrally shaped by a secondary laser-plasma interaction on a separate foil, reliably creating well-separated quasi-monoenergetic features in the energy spectrum. The observed modulations are fully explained by a one-dimensional (1D) model supported by numerical simulations. These findings demonstrate that laser acceleration can, in principle, be applied in an additive manner. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Laser-driven ion acceleration using isolated mass-limited spheres
    (College Park, MD : Institute of Physics Publishing, 2010) Sokollik, T.; Paasch-Colberg, T.; Gorling, K.; Eichmann, U.; Schnürer, M.; Steinke, S.; Nickles, P.V.; Andreev, A.; Sandner, W.
    We report on our experiments on laser-driven ion acceleration using fully isolated mass-limited spheres with a diameter down to 8μm for the first time. Two-dimensional (2D) particle-in-cell (PIC) and hydro-code simulations were used to show that the pre-plasma at both the front and rear sides of the target strongly affect the efficiency of the ion acceleration. The mechanism of the plasma flow around mass-limited targets has not yet been identified for laser-driven ion acceleration. Our models indicate that this effect is the cause of the observed limitation to the ion-beam energy in both previous experiments and in our own. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.