Search Results

Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Item

GENERIC for dissipative solids with bulk-interface interaction

2021, Heida, Martin, Thomas, Marita

The modeling framework of GENERIC was originally introduced by Grmela and Öttinger for thermodynamically closed systems. It is phrased with the aid of the energy and entropy as driving functionals for reversible and dissipative processes and suitable geometric structures. Based on the definition functional derivatives we propose a GENERIC framework for systems with bulk-interface interaction and apply it to discuss the GENERIC structure of models for delamination processes.

Loading...
Thumbnail Image
Item

GENERIC framework for reactive fluid flows

2021, Zafferi, Andrea, Peschka, Dirk, Thomas, Marita

We describe reactive fluid flows in terms of the formalism General Equation for Non-Equilibrium Reversible-Irreversible Coupling also known as GENERIC. Together with the formalism, we present the thermodynamical and mechanical foundations for the treatment of fluid flows using continuous fields and present a clear relation and transformation between a Lagrangian and an Eulerian formulation of the corresponding systems of partial differential equations. We bring the abstract framework to life by providing many physically relevant examples for reactive compressive fluid flows.

Loading...
Thumbnail Image
Item

Well-posedness of Hibler's dynamical sea-ice model

2021, Liu, Xin, Thomas, Marita, Titi, Edriss

This paper establishes the local-in-time well-posedness of solutions to an approximating system constructed by mildly regularizing the dynamical sea ice model of it W.D. Hibler, Journal of Physical Oceanography, 1979. Our choice of regularization has been carefully designed, prompted by physical considerations, to retain the original coupled hyperbolic-parabolic character of Hibler's model. Various regularized versions of this model have been used widely for the numerical simulation of the circulation and thickness of the Arctic ice cover. However, due to the singularity in the ice rheology, the notion of solutions to the original model is unclear. Instead, an approximating system, which captures current numerical study, is proposed. The well-posedness theory of such a system provides a first-step groundwork in both numerical study and future analytical study.

Loading...
Thumbnail Image
Item

Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants

2020, Thomas, Marita, Bilgen, Carola, Weinberg, Kerstin

Phase-field models have already been proven to predict complex fracture patterns for brittle fracture at small strains. In this paper we discuss a model for phase-field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. Here we present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split of the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time-discrete solutions converge in a weak sense to a solution of the time-continuous formulation of the model. Numerical examples in two and three space dimensions illustrate the range of validity of the analytical results.

Loading...
Thumbnail Image
Item

Analysis of a compressible Stokes-flow with degenerating and singular viscosity

2020, Farshbaf Shaker, Mohammad Hassan, Thomas, Marita

In this paper we show the existence of a weak solution for a compressible single-phase Stokes flow with mass transport accounting for the degeneracy and the singular behavior of a density-dependent viscosity. The analysis is based on an implicit time-discrete scheme and a Galerkin-approximation in space. Convergence of the discrete solutions is obtained thanks to a diffusive regularization of p-Laplacian type in the transport equation that allows for refined compactness arguments on subdomains.

Loading...
Thumbnail Image
Item

Approximation schemes for materials with discontinuities

2020, Bartels, Sören, Milicevic, Marijo, Thomas, Marita, Tornquist, Sven, Weber, Nico

Damage and fracture phenomena are related to the evolution of discontinuities both in space and in time. This contribution deals with methods from mathematical and numerical analysis to handle these: Suitable mathematical formulations and time-discrete schemes for problems with discontinuities in time are presented. For the treatment of problems with discontinuities in space, the focus lies on FE-methods for minimization problems in the space of functions of bounded variation. The developed methods are used to introduce fully discrete schemes for a rate-independent damage model and for the viscous approximation of a model for dynamic phase-field fracture. Convergence of the schemes is discussed.

Loading...
Thumbnail Image
Item

Variational approach to fluid-structure interaction via GENERIC

2021, Peschka, Dirk, Zafferi, Andrea, Heltai, Luca, Thomas, Marita

We present a framework to systematically derive variational formulations for fluid-structure interaction problems based on thermodynamical driving functionals and geometric structures in different coordinate systems by suitable transformations within this formulation. Our approach provides a promising basis to construct structure-preserving discretization strategies.

Loading...
Thumbnail Image
Item

Fully discrete approximation of rate-independent damage models with gradient regularization

2020, Bartels, Sören, Milicevic, Marijo, Thomas, Marita, Weber, Nico

This work provides a convergence analysis of a time-discrete scheme coupled with a finite-element approximation in space for a model for partial, rate-independent damage featuring a gradient regularization as well as a non-smooth constraint to account for the unidirectionality of the damage evolution. The numerical algorithm to solve the coupled problem of quasistatic small strain linear elasticity with rate-independent gradient damage is based on a Variable ADMM-method to approximate the nonsmooth contribution. Space-discretization is based on P1 finite elements and the algorithm directly couples the time-step size with the spatial grid size h. For a wide class of gradient regularizations, which allows both for Sobolev functions of integrability exponent r ∈ (1, ∞) and for BV-functions, it is shown that solutions obtained with the algorithm approximate as h → 0 a semistable energetic solution of the original problem. The latter is characterized by a minimality property for the displacements, a semistability inequality for the damage variable and an energy dissipation estimate. Numerical benchmark experiments confirm the stability of the method.

Loading...
Thumbnail Image
Item

Discrete approximation of dynamic phase-field fracture in visco-elastic materials

2020, Thomas, Marita, Tornquist, Sven

This contribution deals with the analysis of models for phase-field fracture in visco-elastic materials with dynamic effects. The evolution of damage is handled in two different ways: As a viscous evolution with a quadratic dissipation potential and as a rate-independent law with a positively 1-homogeneous dissipation potential. Both evolution laws encode a non-smooth constraint that ensures the unidirectionality of damage, so that the material cannot heal. Suitable notions of solutions are introduced in both settings. Existence of solutions is obtained using a discrete approximation scheme both in space and time. Based on the convexity properties of the energy functional and on the regularity of the displacements thanks to their viscous evolution, also improved regularity results with respect to time are obtained for the internal variable: It is shown that the damage variable is continuous in time with values in the state space that guarantees finite values of the energy functional.