Search Results

Now showing 1 - 10 of 21
  • Item
    From nonlinear to linear elasticity in a coupled rate-dependent/independent system for brittle delamination
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Rossi, Riccarda; Thomas, Marita
    We revisit the weak, energetic-type existence results obtained in [RT15] for a system for rateindependent, brittle delamination between two visco-elastic, physically nonlinear bulk materials and explain how to rigorously extend such results to the case of visco-elastic, linearly elastic bulk materials. Our approximation result is essentially based on deducing the MOSCO-convergence of the functionals involved in the energetic formulation of the system. We apply this approximation result in two different situations at small strains: Firstly, to pass from a nonlinearly elastic to a linearly elastic, brittle model on the time-continuous level, and secondly, to pass from a time-discrete to a time-continuous model using an adhesive contact approximation of the brittle model, in combination with a vanishing, super-quadratic regularization of the bulk energy. The latter approach is beneficial if the model also accounts for the evolution of temperature.
  • Item
    Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Thomas, Marita; Bilgen, Carola; Weinberg, Kerstin
    Phase-field models have already been proven to predict complex fracture patterns in two and three dimensions for brittle fracture at small strains. In this paper we discuss a model for phasefield fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. We here present a phase-field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split and the modified invariants of the right Cauchy-Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time-discrete solutions converge in a weak sense to a solution of the timecontinuous formulation of the model. Numerical examples in two and three space dimensions are carried out in the range of validity of the analytical results.
  • Item
    Rate-independent evolution of sets
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Rossi, Riccarda; Stefanelli, Ulisse; Thomas, Marita
    The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes. In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the `external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.
  • Item
    Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Mielke, Alexander; Reichelt, Sina; Thomas, Marita
    We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.
  • Item
    Gradient structures for flows of concentrated suspensions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Peschka, Dirk; Thomas, Marita; Ahnert, Tobias; Münch, Andreas; Wagner, Barbara
    In this work we investigate a two-phase model for concentrated suspensions. We construct a PDE formulation using a gradient flow structure featuring dissipative coupling between fluid and solid phase as well as different driving forces. Our construction is based on the concept of flow maps that also allows it to account for flows in moving domains with free boundaries. The major difference compared to similar existing approaches is the incorporation of a non-smooth twohomogeneous term to the dissipation potential, which creates a normal pressure even for pure shear flows.
  • Item
    From damage to delamination in nonlinearly elastic materials at small strains
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Mielke, Alexander; Roubíček, Thomáš; Thomas, Marita
    Brittle Griffith-type delamination of compounds is deduced by means of Gamma-convergence from partial, isotropic damage of three-specimen-sandwich-structures by flattening the middle component to the thickness 0. The models used here allow for nonlinearly elastic materials at small strains and consider the processes to be unidirectional and rate-independent. The limit passage is performed via a double limit: first, we gain a delamination model involving the gradient of the delamination variable, which is essential to overcome the lack of a uniform coercivity arising from the passage from partial damage to delamination. Second, the delamination-gradient is supressed. Noninterpenetration- and transmission-conditions along the interface are obtained
  • Item
    Quasistatic damage evolution with spatial BV-regularization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Thomas, Marita
    An existence result for energetic solutions of rate-independent damage processes is established. We consider a body consisting of a physically linearly elastic material undergoing infinitesimally small deformations and partial damage. In [ThomasMielke10DamageZAMM] an existence result in the small strain setting was obtained under the assumption that the damage variable z satisfies z∈ W1,r(Ω) with r∈(1,∞) for Ω⊂Rd. We now cover the case r=1. The lack of compactness in W1,1(Ω) requires to do the analysis in BV(Ω). This setting allows it to consider damage variables with values in 0,1. We show that such a brittle damage model is obtained as the Γ-limit of functionals of Modica-Mortola type.
  • Item
    Rate-independent damage in thermo-viscoelastic materials with inertia
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Lazzaroni, Giuliano; Rossi, Riccarda; Thomas, Marita; Toader, Rodica
    We present a model for rate-independent, unidirectional, partial damage in visco-elastic materials with inertia and thermal effects. The damage process is modeled by means of an internal variable, governed by a rate-independent flow rule. The heat equation and the momentum balance for the displacements are coupled in a highly nonlinear way. Our assumptions on the corresponding energy functional also comprise the case of the Ambrosio-Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak formulation and prove an existence theorem obtained with the aid of a (partially) decoupled time-discrete scheme and variational convergence methods. We also carry out the asymptotic analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model for displacements and damage, which is independent of temperature.
  • Item
    Numerical approach to a model for quasistatic damage with spatial BV-regularization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Bartels, Sören; Milicevic, Marijo; Thomas, Marita
    We address a model for rate-independent, partial, isotropic damage in quasistatic small strain linear elasticity, featuring a damage variable with spatial BV-regularization. Discrete solutions are obtained using an alternate time-discrete scheme and the Variable-ADMM algorithm to solve the constrained nonsmooth optimization problem that determines the damage variable at each time step. We prove convergence of the method and show that discrete solutions approximate a semistable energetic solution of the rate-independent system. Moreover, we present our numerical results for two benchmark problems.
  • Item
    From adhesive to brittle delamination in visco-elastodynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Rossi, Riccarda; Thomas, Marita
    In this paper we analyze a system for brittle delamination between two visco-elastic bodies, also subject to inertia, which can be interpreted as a model for dynamic fracture. The rate-independent flow rule for the delamination parameter is coupled with the momentum balance for the displacement, including inertia. This model features a nonsmooth constraint ensuring the continuity of the displacements outside the crack set, which is marked by the support of the delamination parameter. A weak solvability concept, generalizing the notion of energetic solution for rate-independent systems to the present mixed rate-dependent/rate-independent frame, is proposed. Via refined variational convergence techniques, existence of solutions is proved by passing to the limit in approximating systems which regularize the nonsmooth constraint by conditions for adhesive contact. The presence of the inertial term requires the design of suitable recovery spaces small enough to provide compactness but large enough to recover the information on the crack set in the limit.