Search Results

Now showing 1 - 9 of 9
  • Item
    Diffraction at GaAs/Fe3Si core/shell nanowires: The formation of nanofacets
    (Cambridge : arXiv, 2016) Jenichen, B.; Hanke, M.; Hilse, M.; Herfort, J.; Trampert, A.; Erwin, S.C.
    GaAs/Fe3Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe3Si shells exhibit nanofacets. These facets consist of well pronounced Fe3Si{111} planes. Density functional theory reveals that the Si-terminated Fe3Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe3Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30° compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [1 1 ̄ 0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe3Si shells and GaAs cores occurring at increased growth temperatures.
  • Item
    Oxygen-deficient oxide growth by subliming the oxide source material: The cause of silicide formation in rare earth oxides on silicon
    (Washington, DC : ACS, 2013) Bierwagen, O.; Proessdorf, A.; Niehle, M.; Grosse, F.; Trampert, A.; Klingsporn, M.
    The fundamental issue of oxygen stoichiometry in oxide thin film growth by subliming the source oxide is investigated by varying the additionally supplied oxygen during molecular beam epitaxy of RE2O3 (RE = Gd, La, Lu) thin films on Si(111). Supplying additional oxygen throughout the entire growth was found to prevent the formation of rare earth silicides observed in films grown without an oxygen source. Postgrowth vacuum annealing of oxygen stoichiometric films did not lead to silicide formation thereby confirming that the silicides do not form as a result of an interface instability at growth temperature in vacuum but rather due to an oxygen deficiency in the source vapor. The average oxygen deficiency of the rare-earth containing species in the source vapor was quantified by the 18O tracer technique and correlated with that of the source material, which gradually decomposed during sublimation. Therefore, any oxide growth by sublimation of the oxide source material requires additional oxygen to realize oxygen stoichiometric films.
  • Item
    Characterization of L21 order in Co2FeSi thin films on GaAs
    (Bristol : Institute of Physics Publishing, 2013) Jenichen, B.; Hentschel, T.; Herfort, J.; Kong, X.; Trampert, A.; Zizak, I.
    Co2FeSi/GaAs(110) and Co2FeSi/GaAs(-1-1-1)B hybrid structures were grown by molecular-beam epitaxy (MBE) and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The films contain inhomogeneous distributions of ordered L21 and B2 phases. The average stoichiometry could be determined by XRD for calibration of the MBE sources. Diffusion processes lead to inhomogeneities, influencing long-range order. An average L21 ordering of up to 65% was measured by grazing-incidence XRD. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were imaged using dark-field TEM with superlattice reflections and shown to correspond to variations of the Co/Fe ratio.
  • Item
    Structural properties of Co2TiSi films on GaAs(001)
    (New York : American Institute of Physics, 2016) Jenichen, B.; Herfort, J.; Hanke, M.; Jahn, U.; Kong, X.; Dau, M.T.; Trampert, A.; Kirmse, H.; Erwin, S.C.
    Co2TiSi films were grown by molecular beam epitaxy on GaAs(001) and analyzed using reflection high-energy electron diffraction, and electron microscopy. In addition, X-ray diffraction was combined with lattice parameter calculations by density functional theory comparing the L21 and B2 structures and considering the influence of non-stoichiometry. Columnar growth is found and attributed to inhomogeneous epitaxial strain from non-random alloying. In films with thicknesses up to 13 nm, these columns may be the origin of perpendicular magnetization with the easy axis perpendicular to the sample surface. We found L21 and B2 ordered regions, however the [Co]/[Ti]-ratio is changing in dependence of the position in the film. The resulting columnar structure is leading to anisotropic B2-ordering with the best order parallel to the axes of the columns.
  • Item
    Growth of Fe3Si/Ge/Fe3Si trilayers on GaAs(001) using solid-phase epitaxy
    (New York : American Institute of Physics, 2017) Gaucher, S.; Jenichen, B.; Kalt, J.; Jahn, U.; Trampert, A.; Herfort, J.
    Ferromagnetic Heusler alloys can be used in combination with semiconductors to create spintronic devices. The materials have cubic crystal structures, making it possible to grow lattice-matched heterojunctions by molecular beam epitaxy. However, the development of devices is limited by the difficulty of growing epitaxial semiconductors over metallic surfaces while preventing chemical reactions, a requirement to obtain abrupt interfaces and achieve efficient spin-injection by tunneling. We used a solid-phase epitaxy approach to grow crystalline thin film stacks on GaAs(001) substrates, while preventing interfacial reactions. The crystallized Ge layer forms superlattice regions, which are caused by the migration of Fe and Si atoms into the film. X-ray diffraction and transmission electron microscopy indicate that the trilayers are fully crystalline, lattice-matched, and have ideal interface quality over extended areas.
  • Item
    Electron tomography of (In,Ga)N insertions in GaN nanocolumns grown on semi-polar (112̄ 2) GaN templates
    (New York : American Institute of Physics, 2015) Niehle, M.; Trampert, A.; Albert, S.; Bengoechea-Encabo, A.; Calleja, E.
    We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( 11 2 ̄ 2 ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.
  • Item
    Nitrogen-enhanced indium segregation in (Ga,In)(N,As)/GaAs multiple quantum wells grown by molecular-beam epitaxy
    (Milton Park : Taylor & Francis, 2007) Luna, E.; Trampert, A.; Pavelescu, E.-M.; Pessa, M.
    Transmission electron microscopy (TEM) is used to determine the composition of quaternary (Ga,In)(N,As) quantum wells (QWs). Through a combined analysis of the chemically sensitive (002) dark-field (DF) images and the lattice-resolving high-resolution TEM images, the local distributions of nitrogen and indium in the growth direction are determined. In particular, we are able to directly detect the existence of indium segregation in (Ga,In)(N,As) QWs. A comparison with the indium distribution profile in the nitrogen-free (In,Ga)As QWs, grown under similar conditions, revealed that incorporating N into the alloy enhanced indium segregation.
  • Item
    Lattice matched Volmer–Weber growth of Fe3Si on GaAs(001) - the influence of the growth rate
    (Bristol : IOP Publ., 2019) Jenichen, B.; Cheng, Z.; Hanke, M.; Herfort, J.; Trampert, A.
    We investigate the formation of lattice matched single-crystalline Fe3Si/GaAs(001) ferromagnet/semiconductor hybrid structures by Volmer-Weber island growth, starting from the epitaxial growth of isolated Fe3Si islands up to the formation of continuous films as a result of island coalescence. We find coherent defect-free layers exhibiting compositional disorder near the Fe3Si/GaAs - interface for higher growth rates, whereas they are fully ordered for lower growth rates. © 2019 IOP Publishing Ltd.
  • Item
    BMBF-Förderschwerpunkt: Quantenstruktursysteme auf der Basis von III-V-Halbleitern, Teilvorhaben: Quantendrähte und Quantenpunkte durch Überwachsen von lateral strukturierten nicht-[100]-orientierten Substraten und Schichtsystemen ; Schlußbericht
    (Berlin : Paul-Drude-Institut für Festkörperphysik, 2000) Nötzel, R.; Fricke, J.; Jahn, U.; Niu, Z.C.; Ramsteiner, M.; Schönherr, H.P.; Trampert, A.
    [no abstract available]