Search Results

Now showing 1 - 10 of 20
Loading...
Thumbnail Image
Item

Kaskadennutzung von Lignocellulose : LX-Verfahren trifft auf B. coagulans

2020, Schroedter, Linda, Streffer, Friedrich, Streffer, Katrin, Unger, Peter, Venus, Joachim

Investigating alternatives for petrobased substrates, lignocellulose is an interesting yet complex feedstock that offers various possibilities for the design of new and sustainable chemical routes. The novel energy-saving LX-pretreatment was combined with thermophilic Bacillus coagulans. By this, corn straw was used in an innovative cascade obtaining biogas, lignin as well as polymerisable L-(+)-lactic acid of over 99 percents optical purity. © 2020, Die Autoren.

Loading...
Thumbnail Image
Item

From Upstream to Purification : Production of Lactic Acid from the Organic Fraction of Municipal Solid Waste

2020, López‑Gómez, José Pablo, Unger, Peter, Schneider, Roland, Venus, Joachim

The implementation of an efficient and sustainable management of the organic fraction of municipal solid wastes (OFMSW) is a topic of intensive discussion in EU countries. Recently, the OFMSW has been investigated as a potential substrate for the production of lactic acid (LA) through fermentation. Nevertheless, none of the reports available in the literature covers all the stages of the conversion process. The present research article is a comprehensive study which includes the upstream, fermentation and downstream for the conversion of OFMSW into LA. Several batches of OFMSW were analysed for the evaluation of sugars released and LA content before the fermentation. Fermentations were performed to study the effect of hydrolysate quality on the LA production using Bacillus coagulans A166. Purification of LA, based on electrodialysis, was carried out after pilot scale fermentation of OFMSW hydrolysates. Results showed that variations in the concentrations of sugars and LA are observed from batch to batch of OFMSW. More specifically, LA can reach high concentrations even before the substrates are hydrolysed, limiting the potential applications of the final product due to low enantiomeric purities. In general, fermentations of the hydrolysate were efficient, with conversion yields of 0.65 g g−1 without the addition of extra nutrients. Downstream is still a challenging stage of the process. A LA recovery of 55% was obtained, with the most significant losses observed during the micro- and nanofiltrations. Overall, a conversion of 10% from OFMSW substrate (dry basis) to LA was achieved.

Loading...
Thumbnail Image
Item

Batch and continuous lactic acid fermentation based on a multi-substrate approach

2020, Olszewska-Widdrat, Agata, Alexandri, Maria, López-Gómez, José Pablo, Schneider, Roland, Venus, Joachim

The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L−1·h−1, while the lactic acid to sugar conversion yield was 0.86 g·g−1 . This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium

2017, Glaser, Robert, Venus, Joachim

Three Bacillus coagulans strains were characterised in terms of their ability to grow in lignin-containing fermentation media and to consume the lignocellulose-related sugars glucose, xylose, and arabinose. An optical-density high-throughput screening was used for precharacterisation by means of different mathematical models for comparison (Logistic, Gompertz, Baranyi, Richards & Stannard, and Schnute). The growth response was characterised by the maximum growth rate and lag time. For a comparison of the screening and fermentation results, an unstructured mathematical model was proposed to characterise the lactate production, bacterial growth and substrate consumption. The growth model was then applied to fermentation procedures using wheat straw hydrolysates. The results indicated that the unstructured growth model can be used to evaluate lactate producing fermentation. Under the experimental fermentation conditions, one strain showed the ability to tolerate a high lignin concentration (2.5 g/L) but lacked the capacity for sufficient pentose uptake. The lactate yield of the strains that were able to consume all sugar fractions of glucose, xylose and arabinose was ∼83.4%. A photometric measurement at 280 nm revealed a dynamic change in alkali-lignin concentrations during lactate producing fermentation. A test of decolourisation of vanillin, ferulic acid, and alkali-lignin samples also showed the decolourisation performance of the B. coagulans strains under study. © 2017 The Author(s)

Loading...
Thumbnail Image
Item

Limited life cycle andcost assessment for the bioconversion of lignin‐derived aromatics into adipic acid

2020, van Duuren, Jozef B.J.H., de Wild, Paul J., Starck, Sören, Bradtmöller, Christian, Selzer, Mirjam, Mehlmann, Kerstin, Schneider, Roland, Kohlstedt, Michael, Poblete‐Castr, Ignacio, Stolzenberger, Jessica, Barton, Nadja, Fritz, Michel, Scholl, Stephan, Venus, Joachim, Wittmann, Christoph

Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts. © 2020 Wiley Periodicals, Inc.

Loading...
Thumbnail Image
Item

A simple biorefinery concept to produce 2g-lactic acid from Sugar Beet Pulp (SBP): A high-value target approach to valorize awaste stream

2020, De Oliveira, Regiane Alves, Schneider, Roland, Lunelli, Betânia Hoss, Rossell, Carlos Eduardo Vaz, Filho, Rubens Maciel, Venus, Joachim

Lactic acid is a high-value molecule with a vast number of applications. Its production in the biorefineries model is a possibility for this sector to aggregate value to its production chain. Thus, this investigation presents a biorefinery model based on the traditional sugar beet industry proposing an approach to produce lactic acid from a waste stream. Sugar beet is used to produce sugar and ethanol, and the remaining pulp is sent to animal feed. Using Bacillus coagulans in a continuous fermentation, 2781.01 g of lactic acid was produced from 3916.91 g of sugars from hydrolyzed sugar beet pulp, with a maximum productivity of 18.06 g L-1h-1. Without interfering in the sugar production, ethanol, or lactic acid, it is also possible to produce pectin and phenolic compounds in the biorefinery. The lactic acid produced was purified by a bipolar membrane electrodialysis and the recovery reached 788.80 g/L with 98% w/w purity. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Valorising agro-industrial wastes within the circular bioeconomy concept: The case of defatted rice bran with emphasis on bioconversion strategies

2020, Alexandri, Maria, López-Gómez, José Pablo, Olszewska-Widdrat, Agata, Venus, Joachim

The numerous environmental problems caused by the extensive use of fossil resources have led to the formation of the circular bioeconomy concept. Renewable resources will constitute the cornerstone of this new, sustainable model, with biomass presenting a huge potential for the production of fuels and chemicals. In this context, waste and by-product streams from the food industry will be treated not as "wastes" but as resources. Rice production generates various by-product streams which currently are highly unexploited, leading to environmental problems especially in the countries that are the main producers. The main by-product streams include the straw, the husks, and the rice bran. Among these streams, rice bran finds applications in the food industry and cosmetics, mainly due to its high oil content. The high demand for rice bran oil generates huge amounts of defatted rice bran (DRB), the main by-product of the oil extraction process. The sustainable utilisation of this by-product has been a topic of research, either as a food additive or via its bioconversion into value-added products and chemicals. This review describes all the processes involved in the efficient bioconversion of DRB into biotechnological products. The detailed description of the production process, yields and productivities, as well as strains used for the production of bioethanol, lactic acid and biobutanol, among others, are discussed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Assessing the organic fraction of municipal solid wastes for the production of lactic acid

2019, López-Gómez, J. Pablo, Latorre-Sánchez, Marcos, Unger, Peter, Schneider, Roland, Coll Lozano, Caterina, Venus, Joachim

With an estimated yearly production of about 140 Mt in the EU, conventionally, the organic fraction of municipal solid wastes (OFMSW) has been disposed in landfills with negative environmental effects. Nonetheless, the chemical composition of this residue make it a substrate with great bioconversion potential. In this study, OFMSW from Spanish municipal treatment plants, were evaluated for the production of LA. Samples were identified according to the sorting mechanisms employed for their collection in: (A) separately collected, (B) non-separately collected and (C) separately collected+paper/cardboard. Enzymatic hydrolysis was used to produce hydrolysates A, B and C accordingly. Hydrolysate A showed the highest total sugars and glucose content with values of 70 and 55 g·L−1, respectively. Following the characterisation, a screening showed that growth of B. coagulans was possible in all three hydrolysates. Furthermore, lab scale fermentations showed that LA final concentrations could reach around 60 g·L−1, with yields from total sugars of above 0.60 g·g−1. A technical scale fermentation of the hydrolysate A resulted in a final LA concentration of 60.7 g·L−1, a yield of 0.71 g·g−1 with a productivity of 2.68 g·L−1·h−1. Overall, it was estimated that 0.23 g of LA could be produced from one g of dry OFMSW.

Loading...
Thumbnail Image
Item

Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass

2020, Azaizeh, Hassan, Abu Tayeh, Hiba N., Schneider, Roland, Klongklaew, Augchararat, Venus, Joachim

Lignocellulosic biomass from agricultural residues is a promising feedstock for lactic acid (LA) production. The aim of the current study was to investigate the production of LA from different lignocellulosic biomass. The LA production from banana peduncles using strain Bacillus coagulans with yeast extract resulted in 26.6 g LA·L-1, and yield of 0.90 g LA·g-1 sugars. The sugarcane fermentation with yeast extract resulted in 46.5 g LA·L-1, and yield of 0.88 g LA·g-1 sugars. Carob showed that addition of yeast extract resulted in higher productivity of 3.2 g LA·L-1·h-1 compared to without yeast extract where1.95 g LA·L-1·h-1 was obtained. Interestingly, similar LA production was obtained by the end where 54.8 and 51.4 g·L-1 were obtained with and without yeast extract, respectively. A pilot scale of 35 L using carob biomass fermentation without yeast extract resulted in yield of 0.84 g LA·g-1 sugars, and productivity of 2.30 g LA·L-1·h-1 which indicate a very promising process for future industrial production of LA.

Loading...
Thumbnail Image
Item

Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste

2021, Martău, Gheorghe-Adrian, Unger, Peter, Schneider, Roland, Venus, Joachim, Vodnar, Dan Cristian, López-Gómez, José Pablo

Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.