Search Results

Now showing 1 - 2 of 2
  • Item
    A Knowledge Graph for Industry 4.0
    (Cham : Springer, 2020) Bader, Sebastian R.; Grangel-Gonzalez, Irlan; Nanjappa, Priyanka; Vidal, Maria-Esther; Maleshkova, Maria; Harth, Andreas; Kirrane, Sabrina; Ngonga Ngomo, Axel-Cyrille; Paulheim, Heiko; Rula, Anisa; Gentile, Anna Lisa; Haase, Peter; Cochez, Michael
    One of the most crucial tasks for today’s knowledge workers is to get and retain a thorough overview on the latest state of the art. Especially in dynamic and evolving domains, the amount of relevant sources is constantly increasing, updating and overruling previous methods and approaches. For instance, the digital transformation of manufacturing systems, called Industry 4.0, currently faces an overwhelming amount of standardization efforts and reference initiatives, resulting in a sophisticated information environment. We propose a structured dataset in the form of a semantically annotated knowledge graph for Industry 4.0 related standards, norms and reference frameworks. The graph provides a Linked Data-conform collection of annotated, classified reference guidelines supporting newcomers and experts alike in understanding how to implement Industry 4.0 systems. We illustrate the suitability of the graph for various use cases, its already existing applications, present the maintenance process and evaluate its quality.
  • Item
    Compacting frequent star patterns in RDF graphs
    (Dordrecht : Springer Science + Business Media B.V, 2020) Karim, Farah; Vidal, Maria-Esther; Auer, Sören
    Knowledge graphs have become a popular formalism for representing entities and their properties using a graph data model, e.g., the Resource Description Framework (RDF). An RDF graph comprises entities of the same type connected to objects or other entities using labeled edges annotated with properties. RDF graphs usually contain entities that share the same objects in a certain group of properties, i.e., they match star patterns composed of these properties and objects. In case the number of these entities or properties in these star patterns is large, the size of the RDF graph and query processing are negatively impacted; we refer these star patterns as frequent star patterns. We address the problem of identifying frequent star patterns in RDF graphs and devise the concept of factorized RDF graphs, which denote compact representations of RDF graphs where the number of frequent star patterns is minimized. We also develop computational methods to identify frequent star patterns and generate a factorized RDF graph, where compact RDF molecules replace frequent star patterns. A compact RDF molecule of a frequent star pattern denotes an RDF subgraph that instantiates the corresponding star pattern. Instead of having all the entities matching the original frequent star pattern, a surrogate entity is added and related to the properties of the frequent star pattern; it is linked to the entities that originally match the frequent star pattern. Since the edges between the entities and the objects in the frequent star pattern are replaced by edges between these entities and the surrogate entity of the compact RDF molecule, the size of the RDF graph is reduced. We evaluate the performance of our factorization techniques on several RDF graph benchmarks and compare with a baseline built on top gSpan, a state-of-the-art algorithm to detect frequent patterns. The outcomes evidence the efficiency of proposed approach and show that our techniques are able to reduce execution time of the baseline approach in at least three orders of magnitude. Additionally, RDF graph size can be reduced by up to 66.56% while data represented in the original RDF graph is preserved.