Search Results

Now showing 1 - 10 of 16
  • Item
    Temporal dissipative solitons in time-delay feedback systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Yanchuk, Serhiy; Ruschel, Stefan; Sieber, Jan; Wolfrum, Matthias
    Localized states are a universal phenomenon observed in spatially distributed dissipative nonlinear systems. Known as dissipative solitons, auto-solitons, spot or pulse solutions, these states play an important role in data transmission using optical pulses, neural signal propagation, and other processes. While this phenomenon was thoroughly studied in spatially extended systems, temporally localized states are gaining attention only recently, driven primarily by applications from fiber or semiconductor lasers. Here we present a theory for temporal dissipative solitons (TDS) in systems with time-delayed feedback. In particular, we derive a system with an advanced argument, which determines the profile of the TDS. We also provide a complete classification of the spectrum of TDS into interface and pseudo-continuous spectrum. We illustrate our theory with two examples: a generic delayed phase oscillator, which is a reduced model for an injected laser with feedback, and the FitzHugh-Nagumo neuron with delayed feedback. Finally, we discuss possible destabilization mechanisms of TDS and show an example where the TDS delocalizes and its pseudo-continuous spectrum develops a modulational instability.
  • Item
    Embedding the dynamics of a single delay system into a feed-forward ring
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir
    We investigate the relation between the dynamics of a single oscillator with delayed selffeedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where stability of periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example we demonstrate how the complex bifurcation scenario of simultaneously emerging multi-jittering solutions can be transferred from a single oscillator with delayed pulse feedback to multi-jittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHughNagumo type.
  • Item
    Multiple self-locking in the Kuramoto--Sakaguchi system with delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Wolfrum, Matthias; Yanchuk, Serhiy; D'Huys, Otti
    We study the Kuramoto-Sakaguchi system of phase oscillators with a delayed mean-field coupling. By applying the theory of large delay to the corresponding Ott--Antonsen equation, we explain fully analytically the mechanisms for the appearance of multiple coexisting partially locked states. Closely above the onset of synchronization, these states emerge in the Eckhaus scenario: with increasing coupling, more and more partially locked states appear unstable from the incoherent state, and gain stability for larger coupling at a modulational stability boundary. The partially locked states with strongly detuned frequencies are shown to emerge subcritical and gain stability only after a fold and a series of Hopf bifurcations. We also discuss the role of the Sakaguchi phase lag parameter. For small delays, it determines, together with the delay time, the attraction or repulsion to the central frequency, which leads to supercritical or subcritical behavior, respectively. For large delay, the Sakaguchi parameter does not influence the global dynamical scenario.
  • Item
    Spectrum and amplitude equations for scalar delay-differential equations with large delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Yanchuk, Serhiy; Lücken, Leonhard; Wolfrum, Matthias; Mielke, Alexander
    The subject of the paper are scalar delay-differential equations with large delay. Firstly, we describe the asymptotic properties of the spectrum of linear equations. Using these properties, we classify possible types of destabilization of steady states. In the limit of large delay, this classification is similar to the one for parabolic partial differential equations. We present a derivation and error estimates for amplitude equations, which describe universally the local behavior of scalar delay-differential equations close to the destabilization threshold.
  • Item
    Destabilization patterns in large regular networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Yanchuk, Serhiy; Wolfrum, Matthias
    We describe a generic mechanism for the destabilization in large regular networks of identical coupled oscillators. Based on a reduction method for the spectral problem, we first present a criterion for this type of destabilization. Then, we investigate the related bifurcation scenario, showing the existence of a large number of coexisting periodic solutions with different frequencies, spatial patterns, and stability properties. Even for unidirectional coupling this can be understood in analogy to the well-known Eckhaus scenario for diffusive systems.
  • Item
    Noise-induced switching in two adaptively coupled excitable systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Bačić, Iva; Yanchuk, Serhiy; Wolfrum, Matthias; Franović, Igor
    We demonstrate that the interplay of noise and plasticity gives rise to slow stochastic fluctuations in a system of two adaptively coupled active rotators with excitable local dynamics. Depending on the adaptation rate, two qualitatively different types of switching behavior are observed. For slower adaptation, one finds alternation between two modes of noise-induced oscillations, whereby the modes are distinguished by the different order of spiking between the units. In case of faster adaptation, the system switches between the metastable states derived from coexisting attractors of the corresponding deterministic system, whereby the phases exhibit a bursting-like behavior. The qualitative features of the switching dynamics are analyzed within the framework of fast-slow analysis.
  • Item
    Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally coupled phase oscillators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Omel'chenko, Oleh; Wolfrum, Matthias; Yanchuk, Serhiy; Maistrenko, Yuri; Sudakov, Oleksandr
    Recently it has been shown that large arrays of identical oscillators with non-local coupling can have a remarkable type of solutions that display a stationary macroscopic pattern of coexisting regions with coherent and incoherent motion, often called chimera states. We present here a detailed numerical study of the appearance of such solutions in twodimensional arrays of coupled phase oscillators. We discover a variety of stationary patterns, including circular spots, stripe patterns, and patterns of multiple spirals. Here, the stationarity means that for increasing system size the locally averaged phase distributions tend to the stationary profile given by the corresponding thermodynamic limit equation
  • Item
    On the stability of periodic orbits in delay equations with large delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Sieber, Jan; Wolfrum, Matthias; Lichtner, Mark; Yanchuk, Serhiy
    We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay
  • Item
    Coexistence of Hamiltonian-like and dissipative dynamics in chains of coupled phase oscillators with skew-symmetric coupling
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Burylko, Oleksandr; Mielke, Alexander; Wolfrum, Matthias; Yanchuk, Serhiy
    We consider rings of coupled phase oscillators with anisotropic coupling. When the coupling is skew-symmetric, i.e. when the anisotropy is balanced in a specific way, the system shows robustly a coexistence of Hamiltonian-like and dissipative regions in the phase space. We relate this phenomenon to the time-reversibility property of the system. The geometry of low-dimensional systems up to five oscillators is described in detail. In particular, we show that the boundary between the dissipative and Hamiltonian-like regions consists of families of heteroclinic connections. For larger chains with skew-symmetric coupling, some sufficient conditions for the coexistence are provided, and in the limit of N oscillators, we formally derive an amplitude equation for solutions in the neighborhood of the synchronous solution. It has the form of a nonlinear Schrödinger equation and describes the Hamiltonian-like region existing around the synchronous state similarly to the case of finite rings.
  • Item
    The spectrum of delay differential equations with large delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Lichtner, Mark; Wolfrum, Matthias; Yanchuk, Serhiy
    We show that the spectrum of linear delay differential equations with large delay splits into two different parts. One part, called the strong spectrum, converges to isolated points when the delay parameter tends to infinity. The other part, called the pseudocontinuous spectrum, accumulates near criticality and converges after rescaling to a set of spectral curves, called the asymptotic continuous spectrum. We show that the spectral curves and strong spectral points provide a complete description of the spectrum for sufficiently large delay and can be comparatively easily calculated by approximating expressions.