Search Results

Now showing 1 - 10 of 23
  • Item
    Oscillatory instability in systems with delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Wolfrum, Matthias; Yanchuk, Serhiy
    Any biological or physical system, which incorporates delayed feedback or delayed coupling, can be modeled by a dynamical system with delayed argument. We describe a standard oscillatory destabilization mechanism, which occurs in such systems.
  • Item
    Control of unstable steady states by strongly delayed feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Yanchuk, Serhiy; Wolfrum, Matthias; Hövel, Philipp; Schöll, Eckehard
    We present an asymptotic analysis of time-delayed feedback control of steady states for large delay time. By scaling arguments, and a detailed comparison with exact solutions, we establish the parameter ranges for successful stabilization of an unstable fixed point of focus type. Insight into the control mechanism is gained by analysing the eigenvalue spectrum, which consists of a pseudo-continuous spectrum and up to two strongly unstable eigenvalues. Although the standard control scheme generally fails for large delay, we find that if the uncontrolled system is sufficiently close to its instability threshold, control does work even for relatively large delay times.
  • Item
    Spectral properties of chimera states
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Wolfrum, Matthias; Omel'chenko, Oleh; Yanchuk, Serhiy; Maistrenkko, Yuri
    Literaturverz. Chimera states are particular trajectories in systems of phase oscillators with nonlocal coupling that display a pattern of coherent and incoherent motion. We present here a detailed analysis of the spectral properties for such trajectories. First, we study numerically their Lyapunov spectrum and its behavior for an increasing number of oscillators. The spectra demonstrate the hyperchaotic nature of the chimera states and show a correspondence of the Lyapunov dimension with the number of incoherent oscillators. Then, we pass to the thermodynamic limit equation and present an analytic approach to the spectrum of a corresponding linearized evolution operator. We show that in this setting, the chimera state is neutrally stable and that the continuous spectrum coincides with the limit of the hyperchaotic Lyapunov spectrum obtained for the finite size systems.
  • Item
    Absolute stability and absolute hyperbolicity in systems with discrete time-delays
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Yanchuk, Serhiy; Wolfrum, Matthias; Pereira, Tiago; Turaev, Dmitry
    An equilibrium of a delay differential equation (DDE) is absolutely stable, if it is locally asymptotically stable for all delays. We present criteria for absolute stability of DDEs with discrete timedelays. In the case of a single delay, the absolute stability is shown to be equivalent to asymptotic stability for sufficiently large delays. Similarly, for multiple delays, the absolute stability is equivalent to asymptotic stability for hierarchically large delays. Additionally, we give necessary and sufficient conditions for a linear DDE to be hyperbolic for all delays. The latter conditions are crucial for determining whether a system can have stabilizing or destabilizing bifurcations by varying time delays.
  • Item
    Delay-induced patterns in a two-dimensional lattice of coupled oscillators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Kantner, Markus; Schöll, Eckehard; Yanchuk, Serhiy
    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators. A "hybrid dispersion relation" is introduced, which describes the stability of the patterns in spatially extended systems with large time-delay.
  • Item
    Noise enhanced coupling between two oscillators with long-term plasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Lücken, Leonhard; Popovych, Oleksandr V.; Tass, Peter A.; Yanchuk, Serhiy
    Spike time-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations. We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons. Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible, where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-Huxley neurons.
  • Item
    Detection and storage of multivariate temporal sequences by spiking pattern reverberators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Lücken, Leonhard; Yanchuk, Serhiy
    We consider networks of spiking coincidence detectors in continuous time. A single detector is a finite state machine that emits a pulsatile signal whenever the number incoming inputs exceeds a threshold within a time window of some tolerance width. Such finite state models are well-suited for hardware implementations of neural networks, as on integrated circuits (IC) or field programmable arrays (FPGAs) but they also reflect the natural capability of many neurons to act as coincidence detectors. We pay special attention to a recurrent coupling structure, where the delays are tuned to a specific pattern. Applying this pattern as an external input leads to a self-sustained reverberation of the encoded pattern if the tuning is chosen correctly. In terms of the coupling structure, the tolerance and the refractory time of the individual coincidence detectors, we determine conditions for the uniqueness of the sustained activity, i.e., for the funcionality of the network as an unambiguous pattern detector. We also present numerical experiments, where the functionality of the proposed pattern detector is demonstrated replacing the simplistic finite state models by more realistic Hodgkin-Huxley neurons and we consider the possibility of implementing several pattern detectors using a set of shared coincidence detectors. We propose that inhibitory connections may aid to increase the precision of the pattern discrimination.
  • Item
    Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Yanchuk, Serhiy; Perlikowski, Przemysław; Wolfrum, Matthias; Stefański, Andrzej; Kapitaniak, Tomasz
    We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.
  • Item
    Dynamics of a stochastic excitable system with slowly adapting feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Franović, Igor; Yanchuk, Serhiy; Eydam, Sebastian; Bačić, Iva; Wolfrum, Matthias
    We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic busting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance, or effectively control the features of the stochastic bursting. The setup can be considered as a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.
  • Item
    Spectrum and amplitude equations for scalar delay-differential equations with large delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Yanchuk, Serhiy; Lücken, Leonhard; Wolfrum, Matthias; Mielke, Alexander
    The subject of the paper are scalar delay-differential equations with large delay. Firstly, we describe the asymptotic properties of the spectrum of linear equations. Using these properties, we classify possible types of destabilization of steady states. In the limit of large delay, this classification is similar to the one for parabolic partial differential equations. We present a derivation and error estimates for amplitude equations, which describe universally the local behavior of scalar delay-differential equations close to the destabilization threshold.