Search Results

Now showing 1 - 3 of 3
  • Item
    A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics
    (Cambridge : Royal Society of Chemistry, 2022) Pang, Jinbo; Wang, Yanhao; Yang, Xiaoxin; Zhang, Lei; Li, Yufen; Zhang, Yu; Yang, Jiali; Yang, Feng; Wang, Xiao; Cuniberti, Gianaurelio; Liu, Hong; Rümmeli, Mark H.
    2D nonlayered materials have attracted enormous research interests due to their novel physical and chemical properties with confined dimensions. Platinum monosulfide as one of the most common platinum-group minerals has been less studied due to either the low purity in the natural product or the extremely high-pressure conditions for synthesis. Recently, platinum monosulfide (PtS) 2D membranes have emerged as rising-star materials for fundamental Raman and X-ray photoelectron spectral analysis as well as device exploration. However, a large-area homogeneous synthesis route has not yet been proposed and released. In this communication, we report a facile metal sulfurization strategy for the synthesis of a 4-inch wafer-scale PtS film. Enhanced characterization tools have been employed for thorough analysis of the crystal structure, chemical environment, vibrational modes, and atomic configuration. Furthermore, through theoretical calculations the phase diagram of the Pt–S compound has been plotted for showing the successful formation of PtS in our synthesis conditions. Eventually, a high-quality PtS film has been reflected in device demonstration by a photodetector. Our approach may shed light on the mass production of PtS films with precise control of their thickness and homogeneity as well as van der Waals heterostructures and related electronic devices.
  • Item
    Applications of Carbon Nanotubes in the Internet of Things Era
    (Berlin ; Heidelberg [u.a.] : Springer, 2021) Pang, Jinbo; Bachmatiuk, Alicja; Yang, Feng; Liu, Hong; Zhou, Weijia; Rümmeli, Mark H.; Cuniberti, Gianaurelio
    The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
  • Item
    High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy
    (Weinheim : Wiley, 2021) Zhang, Shu; Pang, Jinbo; Cheng, Qilin; Yang, Feng; Chen, Yu; Liu, Yu; Li, Yufen; Gemming, Thomas; Liu, Xiaoyan; Ibarlucea, Bergoi; Yang, Jiali; Liu, Hong; Zhou, Weijia; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    Tungsten diselenide (WSe2) possesses extraordinary electronic properties for applications in electronics, optoelectronics, and emerging exciton physics. The synthesis of monolayer WSe2 film is of topmost for device arrays and integrated circuits. The monolayer WSe2 film has yet been reported by thermal chemical vapor deposition (CVD) approach, and the nucleation mechanism remains unclear. Here, we report a pre-seeding strategy for finely regulating the nuclei density at an early stage and achieving a fully covered film after chemical vapor deposition growth. The underlying mechanism is heterogeneous nucleation from the pre-seeding tungsten oxide nanoparticles. At first, we optimized the precursor concentration for pre-seeding. Besides, we confirmed the superiority of the pre-seeding method, compared with three types of substrate pretreatments, including nontreatment, sonication in an organic solvent, and oxygen plasma. Eventually, the high-quality synthetic WSe2 monolayer film exhibits excellent device performance in field-effect transistors and photodetectors. We extracted thermodynamic activation energy from the nucleation and growth data. Our results may shed light on the wafer-scale production of homogeneous monolayer films of WSe2, other 2D materials, and their van der Waals heterostructures.