Search Results

Now showing 1 - 5 of 5
  • Item
    Modulation Linearity Characterization of Si Ring Modulators
    (Washington, DC : OSA, 2021) Jo, Youngkwan; Mai, Christian; Lischke, Stefan; Zimmermann, Lars; Choi, Woo-Young
    Modulation linearity of Si ring modulators (RMs) is investigated through the numerical simulation based on the coupled-mode theory and experimental verification. Numerical values of the key parameters needed for the simulation are experimentally extracted. Simulation and measurement results agree well. With these, the influence of input optical wavelength and power on the Si RM linearity are characterized.
  • Item
    Design and performance analysis of integrated focusing grating couplers for the transverse-magnetic TM00 mode in a photonic BiCMOS technology
    (London : Biomed Central, 2020) Georgieva, Galina; Voigt, Karsten; Peczek, Anna; Mai, Christian; Zimmermann, Lars
    Focusing grating couplers for the excitation of the fundamental transverse-magnetic (TM) mode in integrated silicon photonic waveguides are designed and characterized under the boundary conditions of a photonic BiCMOS foundry. Two types of waveguide geometries are considered – a nanowire and a rib waveguide. Wafer-scale experimental results for nanowire TM grating couplers are in excellent agreement with numerical investigations and demonstrate a robust behavior on the wafer. The mean coupling loss and the 3s interval are -3.9 ± 0.3 dB. The on wafer variation is three times lower than for the fundamental transverse-electric (TE) polarization. Similarly, the coupling in rib waveguides is examined as well. The results indicate that the rib waveguides require a modified geometry when designed for TM. In general, the nanowire waveguide type is more suitable for TM coupling, showing a stable and repeatable performance. © 2020, The Author(s).
  • Item
    A physical origin of cross-polarization and higher-order modes in two-dimensional (2D) grating couplers and the related device performance limitations
    (Bristol : IOP Publishing, 2021) Georgieva, Galina; Voigt, Karsten; Seiler, Pascal M.; Mai, Christian; Petermann, Klaus; Zimmermann, Lars
    We explore scattering effects as the physical origin of cross-polarization and higher-order modes in silicon photonic 2D grating couplers (GCs). A simplified analytical model is used to illustrate that in-plane scattering always takes place, independent of grating geometry and design coupling angle. Experimental investigations show furthermore that grating design parameters are especially related to the modal composition of both the target- and the cross-polarization. Scattering effects and the associated cross-polarization and higher-order modes are indicated as the main reason for the higher 2D GC insertion loss compared to standard 1D GCs. In addition, they can be responsible for a variable 2D GC spectrum shape, bandwidth and polarization dependent loss.
  • Item
    Si photonic-electronic monolithically integrated optical receiver with a built-in temperature-controlled wavelength filter
    (Washington, DC : Soc., 2021) Kim, Hyun-Kyu; Kim, Minkyu; Kim, Min-Hyeong; Jo, Youngkwan; Lischke, Stefan; Mai, Christian; Zimmermann, Lars; Choi, Woo-Young
    We present a Si photonic-electronic integrated ring-resonator based optical receiver that contains a temperature-controlled ring-resonator filter (RRF), a Ge photodetector, and receiver circuits in a single chip. The temperature controller automatically determines the RRF temperature at which the maximum transmission of the desired WDM signal is achieved and maintains this condition against any temperature or input wavelength fluctuation. This Si photonic-electronic integrated circuit is realized with 0.25-µm photonic BiCMOS technology, and its operation is successfully confirmed with measurement.
  • Item
    Cross-polarization effects in sheared 2D grating couplers in a photonic BiCMOS technology
    (Bristol : IOP Publ., 2020) Georgieva, Galina; Voigt, Karsten; Mai, Christian; Seiler, Pascal M.; Petermann, Klaus; Zimmermann, Lars
    We investigate numerically and experimentally sheared 2D grating couplers in a photonic BiCMOS technology with a focus on their splitting behavior. Two realization forms of a waveguide-To-grating shear angle are considered. The cross-polarization used as a figure-of-merit is shown to be strongly dependent on the grating perturbation strength and is a crucial limitation not only for the grating splitting performance, but also for its coupling efficiency. © 2020 The Japan Society of Applied Physics.