Search Results

Now showing 1 - 10 of 13
  • Item
    Intercalant-mediated Kitaev exchange in Ag3LiIr2O6
    (College Park, MD : APS, 2022) Yadav, Ravi; Reja, Sahinur; Ray, Rajyavardhan; van den Brink, Jeroen; Nishimoto, Satoshi; Yazyev, Oleg V.
    The recently synthesized Ag3LiIr2O6 has been proposed as a Kitaev magnet in proximity to the quantum spin liquid phase. We explore its microscopic Hamiltonian and magnetic ground state using many-body quantum chemistry methods and exact diagonalization techniques. Our calculations establish a dominant bond dependent ferromagnetic Kitaev exchange between Ir sites and find that the inclusion of Ag 4d orbitals in the configuration interaction calculations strikingly enhances the Kitaev exchange. Furthermore, using exact diagonalization of the nearest-neighbor fully anisotropic J−K−Γ Hamiltonian, we obtain the magnetic phase diagram as a function of further neighbor couplings. We find that the antiferromagnetic off-diagonal coupling stabilizes long range order, but the structure factor calculations suggest that the material is very close to the quantum spin liquid phase and the ordered state can easily collapse into a liquid by small perturbations such as structural distortion or bond disorder.
  • Item
    Observation of orbital order in the van der Waals material 1T−TiSe2
    (College Park, MD : APS, 2022) Peng, Yingying; Guo, Xuefei; Xiao, Qian; Li, Qizhi; Strempfer, Jörg; Choi, Yongseong; Yan, Dong; Luo, Huixia; Huang, Yuqing; Jia, Shuang; Janson, Oleg; Abbamonte, Peter; van den Brink, Jeroen; van Wezel, Jasper
    Besides magnetic and charge order, regular arrangements of orbital occupation constitute a fundamental order parameter of condensed matter physics. Even though orbital order is difficult to identify directly in experiments, its presence was firmly established in a number of strongly correlated, three-dimensional Mott insulators. Here, reporting resonant x-ray-scattering experiments on the layered van der Waals compound 1T-TiSe2, we establish that the known charge density wave in this weakly correlated, quasi-two-dimensional material corresponds to an orbital ordered phase. Our experimental scattering results are consistent with first-principles calculations that bring to the fore a generic mechanism of close interplay between charge redistribution, lattice displacements, and orbital order. It demonstrates the essential role that orbital degrees of freedom play in TiSe2, and their importance throughout the family of correlated van der Waals materials.
  • Item
    Chirality flip of Weyl nodes and its manifestation in strained MoTe2
    (College Park, MD : APS, 2021) Könye, Viktor; Bouhon, Adrien; Fulga, Ion Cosma; Slager, Robert-Jan; van den Brink, Jeroen; Facio, Jorge I.
    Due to their topological charge, or chirality, the Weyl cones present in topological semimetals are considered robust against arbitrary perturbations. One well-understood exception to this robustness is the pairwise creation or annihilation of Weyl cones, which involves the overlap of two oppositely charged nodes in energy and momentum. Here we show that their topological charge can in fact change sign, in a process that involves the merging of not two, but three Weyl nodes. This is facilitated by the presence of rotation and time-reversal symmetries, which constrain the relative positions of Weyl cones in momentum space. We analyze the chirality flip process, showing that transport properties distinguish it from the conventional, double Weyl merging. Moreover, we predict that the chirality flip occurs in MoTe$_2$, where experimentally accessible strain leads to the merging of three Weyl cones close to the Fermi level. Our work sets the stage to further investigate and observe such chirality flipping processes in different topological materials.
  • Item
    Magnetic warping in topological insulators
    (College Park, MD : APS, 2022) Naselli, Gabriele; Moghaddam, Ali G.; Di Napoli, Solange; Vildosola, Verónica; Fulga, Ion Cosma; van den Brink, Jeroen; Facio, Jorge I.
    We analyze the electronic structure of topological surface states in the family of magnetic topological insulators MnBi2nTe3n+1. We show that, at natural-cleavage surfaces, the Dirac cone warping changes its symmetry from hexagonal to trigonal at the magnetic ordering temperature. In particular, an energy splitting develops between the surface states of the same band index but opposite surface momenta upon formation of the long-range magnetic order. As a consequence, measurements of such energy splittings constitute a simple protocol to detect the magnetic ordering via the surface electronic structure, alternative to the detection of the surface magnetic gap. Interestingly, while the latter signals a nonzero surface magnetization, the trigonal warping predicted here is, in addition, sensitive to the direction of the surface magnetic flux. Our results may be particularly useful when the Dirac point is buried in the projection of the bulk states, caused by certain terminations of the crystal or in hole-doped systems, since in both situations the surface magnetic gap itself is not accessible in photoemission experiments.
  • Item
    Evidence for a percolative Mott insulator-metal transition in doped Sr2IrO4
    (College Park, MD : APS, 2021) Sun, Zhixiang; Guevara, Jose M.; Sykora, Steffen; Pärschke, Ekaterina M.; Manna, Kaustuv; Maljuk, Andrey; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd; Hess, Christian
    Despite many efforts to rationalize the strongly correlated electronic ground states in doped Mott insulators, the nature of the doping-induced insulator-to-metal transition is still a subject under intensive investigation. Here, we probe the nanoscale electronic structure of the Mott insulator Sr2IrO4−δ with low-temperature scanning tunneling microscopy and find an enhanced local density of states (LDOS) inside the Mott gap at the location of individual defects which we interpret as defects at apical oxygen sites. A chiral behavior in the topography for those defects has been observed. We also visualize the local enhanced conductance arising from the overlapping of defect states which induces finite LDOS inside of the Mott gap. By combining these findings with the typical spatial extension of isolated defects of about 2 nm, our results indicate that the insulator-to-metal transition in Sr2IrO4−δ could be percolative in nature.
  • Item
    Thermalization by a synthetic horizon
    (College Park, MD : APS, 2022) Mertens, Lotte; Moghaddam, Ali G.; Chernyavsky, Dmitry; Morice, Corentin; van den Brink, Jeroen; van Wezel, Jasper
    Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we establish the emergence of a thermal state accompanying the formation of a synthetic horizon. The resulting temperature for long chains is shown to be identical to the corresponding Unruh temperature, provided that the postquench Hamiltonian matches the entanglement Hamiltonian of the prequench system. Based on detailed analysis of the outgoing radiation we formulate the conditions required for the synthetic horizon to behave as a purely thermal source, paving a way to explore this interplay of quantum-mechanical and gravitational aspects experimentally.
  • Item
    Disorder effects in the Kitaev-Heisenberg model
    (College Park, MD : APS, 2023) Singhania, Ayushi; van den Brink, Jeroen; Nishimoto, Satoshi
    We study the interplay of disorder and Heisenberg interactions in the Kitaev model on a honeycomb lattice. The effect of disorder on the transition between Kitaev spin liquid and magnetic ordered states as well as the stability of magnetic ordering is investigated. Using Lanczos exact diagonalization we discuss the consequences of two types of disorder: (i) random-coupling disorder and (ii) singular-coupling disorder. They exhibit qualitatively similar effects in the pure Kitaev-Heisenberg model without long-range interactions. The range of spin-liquid phases is reduced and the transition to magnetic ordered phases becomes more crossoverlike. Furthermore, the long-range zigzag and stripy orderings in the clean system are replaced by their three domains with different ordering direction. Especially in the crossover range the coexistence of magnetically ordered and Kitaev spin-liquid domains is possible. With increasing the disorder strength the area of domains becomes smaller and the system goes into a spin-glass state. However, the disorder effect is different in magnetically ordered phases caused by long-range interactions. The stability of such magnetic ordering is diminished by singular-coupling disorder and, accordingly, the range of the spin-liquid regime is extended. This mechanism may be relevant to materials like α−RuCl3 and H3LiIr2O6 where the zigzag ground state is stabilized by weak long-range interactions. We also find that the flux gap closes at a critical disorder strength and vortices appears in the flux arrangement. Interestingly, the vortices tend to form kinds of commensurate ordering.
  • Item
    Horizon physics of quasi-one-dimensional tilted Weyl cones on a lattice
    (College Park, MD : APS, 2022) Könye, Viktor; Morice, Corentin; Chernyavsky, Dmitry; Moghaddam, Ali G.; van den Brink, Jeroen; van Wezel, Jasper
    To simulate the dynamics of massless Dirac fermions in curved space-times with one, two, and three spatial dimensions, we construct tight-binding Hamiltonians with spatially varying hoppings. These models represent tilted Weyl semimetals where the tilting varies with position, in a manner similar to the light cones near the horizon of a black hole. We illustrate the gravitational analogies in these models by numerically evaluating the propagation of wave packets on the lattice and then comparing them to the geodesics of the corresponding curved space-time. We also show that the motion of electrons in these spatially varying systems can be understood through the conservation of energy and the quasiconservation of quasimomentum. This picture is confirmed by calculations of the scattering matrix, which indicate an exponential suppression of any noncontinuous change in the quasimomentum. Finally, we show that horizons in the lattice models can be constructed also at finite energies using specially designed tilting profiles.
  • Item
    Berry curvature associated to Fermi arcs in continuum and lattice Weyl systems
    (College Park, MD : APS, 2023) Wawrzik, Dennis; van den Brink, Jeroen
    Recently it has been discovered that in Weyl semimetals the surface state Berry curvature can diverge in certain regions of momentum. This occurs in a continuum description of tilted Weyl cones, which for a slab geometry results in the Berry curvature dipole associated to the surface Fermi arcs growing linearly with slab thickness. Here we investigate analytically incarnations of lattice Weyl semimetals and demonstrate this diverging surface Berry curvature by solving for their surface states and connect these to their continuum descriptions. We show how the shape of the Fermi arc and the Berry curvature hot-line is determined and confirm the 1/k2 divergence of the Berry curvature at the end of the Fermi arc as well as the finite-size effects for the Berry curvature and its dipole, using finite-slab calculations and surface Green's function methods. We further establish that apart from affecting the second-order, nonlinear Hall effect, the divergent Berry curvature has a strong impact on other transport phenomena as the Magnus-Hall effect and the nonlinear chiral anomaly.
  • Item
    Magnetoelectricity induced by rippling of magnetic nanomembranes and wires
    (College Park, MD : APS, 2023) Ortix, Carmine; van den Brink, Jeroen
    Magnetoelectric crystals have the interesting property that they allow electric fields to induce magnetic polarizations, and vice versa, magnetic fields to generate ferroelectric polarizations. Having such a magnetoelectric coupling usually requires complex types of magnetic textures, e.g., of spiraling type. Here, we establish a previously unknown approach to generate linear magnetoelectric coupling in ferromagnetic insulators with intrinsic Dzyaloshinskii-Moriya interaction (DMI). We show that the effect of nanoscale curved geometries combined with the intrinsic DMI of the magnetic shell lead to a reorganization of the magnetic texture that spontaneously breaks inversion symmetry and thereby induces macroscopic magnetoelectric multipoles. Specifically, we prove that structural deformation in the form of controlled ripples activates a magnetoelectric monopole in the recently synthesized two-dimensional magnets. We also demonstrate that in zigzag-shaped ferromagnetic wires in planar architectures, a magnetic toroidal moment triggers direct linear magnetoelectric coupling.