Search Results

Now showing 1 - 10 of 106
  • Item
    Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination
    (New York : American Institute of Physics, 2017) Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.
    The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.
  • Item
    Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy
    (London : BioMed Central, 2012) Davydok, Anton; Breuer, Steffen; Biermanns, Andreas; Geelhaar, Lutz; Pietsch, Ullrich
    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.
  • Item
    Molecular beam epitaxy of GaAs nanowires and their suitability for optoelectronic applications – comparing Au- and self-assisted growth methods
    (Berlin : Humboldt-Universität zu Berlin, 2011) Breuer, Steffen
    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1\% is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.
  • Item
    Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy
    (New York : American Institute of Physics, 2018) Mazzolini, P.; Vogt, P.; Schewski, R.; Wouters, C.; Albrecht, M.; Bierwagen, Oliver
    We here present an experimental study on (010)-oriented -Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (¯110)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in -Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy.
  • Item
    Molecular beam epitaxy of GeTe-Sb2Te3 phase change materials studied by X-ray diffraction
    (Berlin : Humboldt-Universität zu Berlin, 2010) Shayduk, Roman
    The integration of phase change materials into semiconductor heterostructures may lead to the development of a new generation of high density non-volatile phase change memories. Epitaxial phase change materials allow to study the detailed structural changes during the phase transition and to determine the scaling limits of the memory. This work is dedicated to the epitaxial growth of Ge-Sb-Te phase change alloys on GaSb(001). We deposit Ge-Sb-Te (GST) films on GaSb(001) substrates by means of molecular beam epitaxy (MBE). The film orientation and lattice constant evolution is determined in real time during growth using grazing incidence X-ray diffraction (GID). The nucleation stage of the growth is studied \emph{in situ} using reflection high energy electron diffraction (RHEED).
  • Item
    Magnetic properties of GaAs-Fe3Si core-shell nanowires — A comparison of ensemble and single nanowire investigation
    (New York : American Institute of Physics, 2017) Hilse, Maria; Jenichen, Bernd; Herfort, Jens
    On the basis of semiconductor-ferromagnet GaAs-Fe3Si core-shell nanowires (Nws) we compare the facilities of magnetic Nw ensemble measurements by superconducting quantum interference device magnetometry versus investigations on single Nws by magnetic force microscopy and computational micromagnetic modeling. Where a careful analysis of ensemble measurements backed up by transmission electron microscopy gave no insights on the properties of the Nw shells, single Nw investigation turned out to be absolutely essential.
  • Item
    Ferroelectric switching in epitaxial GeTe films
    (New York : American Institute of Physics, 2014) Kolobov, A.V.; Kim, D.J.; Giussani, A.; Fons, P.; Tominaga, J.; Calarco, R.; Gruverman, A.
    In this paper, using a resonance-enhanced piezoresponse force microscopy approach supported by density functional theory computer simulations, we have demonstrated the ferroelectric switching in epitaxial GeTe films. It has been shown that in films with thickness on the order of several nanometers reversible reorientation of polarization occurs due to swapping of the shorter and longer Ge-Te bonds in the interior of the material. It is also hinted that for ultra thin films consisting of just several atomic layers weakly bonded to the substrate, ferroelectric switching may proceed through exchange of Ge and Te planes within individual GeTe layers.
  • Item
    Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001)
    (Milton Park : Taylor & Francis, 2013) Fromm, F.; Oliveira Jr, M.H.; Molina-Sánchez, A.; Hundhausen, M.; Lopes, J.M.J.; Riechert, H.; Wirtz, L.; Seyller, T.
    We report a Raman study of the so-called buffer layer with (6 3 x 6 3)R30 periodicity which forms the intrinsic interface structure between epitaxial graphene and SiC(0001). We show that this interface structure leads to a non-vanishing signal in the Raman spectrum at frequencies in the range of the D- and G-band of graphene and discuss its shape and intensity. Ab initio phonon calculations reveal that these features can be attributed to the vibrational density of states of the buffer layer.
  • Item
    Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices
    (Milton Park : Taylor & Francis, 2015) Tominaga, Junji; Kolobov, Alexander V.; Fons, Paul J.; Wang, Xiaomin; Saito, Yuta; Nakano, Takashi; Hase, Muneaki; Murakami, Shuichi; Herfort, Jens; Takagaki, Yukihiko
    Multiferroics, materials in which both magnetic and electric fields can induce each other, resulting in a magnetoelectric response, have been attracting increasing attention, although the induced magnetic susceptibility and dielectric constant are usually small and have typically been reported for low temperatures. The magnetoelectric response usually depends on d-electrons of transition metals. Here we report that in [(GeTe)2(Sb2Te3)l]m superlattice films (where l and m are integers) with topological phase transition, strong magnetoelectric response may be induced at temperatures above room temperature when the external fields are applied normal to the film surface. By ab initio computer simulations, it is revealed that the multiferroic properties are induced due to the breaking of spatial inversion symmetry when the p-electrons of Ge atoms change their bonding geometry from octahedral to tetrahedral. Finally, we demonstrate the existence in such structures of spin memory, which paves the way for a future hybrid device combining nonvolatile phase-change memory and magnetic spin memory.