Search Results

Now showing 1 - 10 of 35
  • Item
    Giant faraday rotation through ultra-small Fe0n clusters in superparamagnetic FeO-SiO2 vitreous films
    (Hoboken : Wiley, 2017) Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A.; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar
    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass‐based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of xFeO·(100 − x)SiO2, unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.
  • Item
    Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers
    (Ostrava : VSB - Technical University of Ostrava and University of Zilina Faculty of Electrical Engineering, 2017) Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Unger, Sonja; Schwuchow, Anka; Elsmann, Tino; Dellith, Jan; Aichele, Claudia; Fatobene Ando, Ron; Bartelt, Hartmut
    We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.
  • Item
    A new strategy for silver deposition on Au nanoparticles with the use of peroxidase-mimicking DNAzyme monitored by Localized Surface Plasmon Resonance technique
    (Basel : MDPI, 2017) Kosman, Joanna; Jatschka, Jacqueline; Csáki, Andrea; Fritzsche, Wolfgang; Juskowiak, Bernard; Stranik, Ondrej
    Peroxidase-mimicking DNAzyme was applied as a catalyst of silver deposition on gold nanoparticles. This DNAzyme is formed when hemin binds to the G-quadruplex-forming DNA sequence. Such a system is able to catalyze a redox reaction with a one- or two-electron transfer. The process of silver deposition was monitored via a localized surface plasmon resonance technique (LSPR), which allows one to record scattering spectrum of a single nanoparticle. Our study showed that DNAzyme is able to catalyze silver deposition. The AFM experiments proved that DNAzyme induced the deposition of silver shells of approximately 20 nm thickness on Au nanoparticles (AuNPs). Such an effect is not observed when hemin is absent in the system. However, we noticed non-specific binding of hemin to the capture oligonucleotides on a gold NP probe that also induced some silver deposition, even though the capture probe was unable to form G-quadruplex. Analysis of SEM images indicated that the surface morphology of the silver layer deposited by DNAzyme is different from that obtained for hemin alone. The proposed strategy of silver layer synthesis on gold nanoparticles catalyzed by DNAzyme is an innovative approach and can be applied in bioanalysis (LSPR, electrochemistry) as well as in material sciences.
  • Item
    Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique
    (Basel : MDPI, 2017) Zukovskaja, Olga; Jahn, Izabella-Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
    Pyocyanin (PYO) is a metabolite specific for Pseudomonas aeruginosa. In the case of immunocompromised patients, it is currently considered a biomarker for life-threating Pseudomonas infections. In the frame of this study it is shown, that PYO can be detected in aqueous solution by employing surface-enhanced Raman spectroscopy (SERS) combined with a microfluidic platform. The achieved limit of detection is 0.5 μM. This is ~2 orders of magnitude below the concentration of PYO found in clinical samples. Furthermore, as proof of principle, the SERS detection of PYO in the saliva of three volunteers was also investigated. This body fluid can be collected in a non-invasive manner and is highly chemically complex, making the detection of the target molecule challenging. Nevertheless, PYO was successfully detected in two saliva samples down to 10 μM and in one sample at a concentration of 25 μM. This indicates that the molecules present in saliva do not inhibit the efficient adsorption of PYO on the surface of the employed SERS active substrates.
  • Item
    An optically pumped magnetometer working in the light-shift dispersed Mz mode
    (Basel : MDPI, 2017) Schultze, Volkmar; Schillig, Bastian; IJsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Stolz, Ronny
    We present an optically pumped magnetometer working in a new operational mode—the light-shift dispersed Mz (LSD-Mz) mode. It is realized combining various features; (1) high power off-resonant optical pumping; (2) Mz configuration, where pumping light and magnetic field of interest are oriented parallel to each other; (3) use of small alkali metal vapor cells of identical properties in integrated array structures, where two such cells are pumped by circularly polarized light of opposite helicity; and (4) subtraction of the Mz signals of these two cells. The LSD-Mz magnetometer’s performance depends on the inherent and very complex interplay of input parameters. In order to find the configuration of optimal magnetometer resolution, a sensitivity analysis of the input parameters by means of Latin Hypercube Sampling was carried out. The resulting datasets of the multi-dimensional parameter space exploration were assessed by a subsequent physically reasonable interpretation. Finally, the best shot-noise limited magnetic field resolution was determined within that parameter space. As the result, using two 50 mm3 integrated vapor cells a magnetic field resolution below 10 fT/√Hz at Earth’s magnetic field strength is possible
  • Item
    Electric current-driven spectral tunability of surface plasmon polaritons in gold coated tapered fibers
    (College Park : American Institute of Physics, 2018) Lühder, Tilman; Wieduwilt, Torsten; Schneidewind, Henrik; Schmidt, Markus A.
    Here we introduce the concept of electrically tuning surface plasmon polaritons using current-driven heat dissipation, allowing controlling plasmonic properties via a straightforward-to-access quantity. The key idea is based on an electrical current flowing through the plasmonic layer, changing plasmon dispersion and phase-matching condition via a temperature-imposed modification of the refractive index of one of the dielectric media involved. This scheme was experimentally demonstrated on the example of an electrically connected plasmonic fiber taper that has sensitivities >50000 nm/RIU. By applying a current, dissipative heat generated inside metal film heats the surrounding liquid, reducing its refractive index correspondingly and thus modifying the phase-matching condition to the fundamental taper mode. We observed spectral shifts of the plasmonic resonance up to 300 nm towards shorter wavelength by an electrical power of ≤ 80 mW, clearly showing that our concept is important for applications that demand precise real-time and external control on plasmonic dispersion and resonance wavelengths.
  • Item
    Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool
    (London : BioMed Central, 2016) Bocklitz, Thomas W.; Salah, Firas Subhi; Vogler, Nadine; Heuke, Sandro; Chernavskaia, Olga; Schmidt, Carsten; Waldner, Maximilian J.; Greten, Florian R.; Bräuer, Rolf; Schmitt, Michael; Stallmach, Andreas; Petersen, Iver; Popp, Jürgen
    Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.
  • Item
    Curcuminoid–BF2 complexes: Synthesis, fluorescence and optimization of BF2 group cleavage
    (Frankfurt a.M. : Beilstein-Institut, 2017) Weiß, Henning; Reichel, Jeannine; Görls, Helmar; Schneider, Kilian R.A.; Micheel, Mathias; Pröhl, Michael; Gottschaldt, Michael; Dietzek, Benjamin; Weigand, Wolfgang
    Eight difluoroboron complexes of curcumin derivatives carrying alkyne groups containing substituents have been synthesized following an optimised reaction pathway. The complexes were received in yields up to 98% and high purities. Their properties as fluorescent dyes have been investigated. Furthermore, a strategy for the hydrolysis of the BF2 group has been established using aqueous methanol and sodium hydroxide or triethylamine.