Search Results

Now showing 1 - 10 of 18
  • Item
    Hybrid soliton dynamics in liquid-core fibres
    (Berlin : Nature Pulishing, 2017) Chemnitz, Mario; Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Kobelke, Jens; Limpert, Jens; Tünnermann, Andreas; Schmidt, Markus A.
    The discovery of optical solitons being understood as temporally and spectrally stationary optical states has enabled numerous innovations among which, most notably, supercontinuum light sources have become widely used in both fundamental and applied sciences. Here, we report on experimental evidence for dynamics of hybrid solitons—a new type of solitary wave, which emerges as a result of a strong non-instantaneous nonlinear response in CS2-filled liquid-core optical fibres. Octave-spanning supercontinua in the mid-infrared region are observed when pumping the hybrid waveguide with a 460 fs laser (1.95 μm) in the anomalous dispersion regime at nanojoule-level pulse energies. A detailed numerical analysis well correlated with the experiment uncovers clear indicators of emerging hybrid solitons, revealing their impact on the bandwidth, onset energy and noise characteristics of the supercontinua. Our study highlights liquid-core fibres as a promising platform for fundamental optics and applications towards novel coherent and reconfigurable light sources.
  • Item
    Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments
    (München : European Geopyhsical Union, 2016) Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António
    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid–viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8–9 campaigns and its potential contribution to tropical troposphere layer analysis.
  • Item
    Analysis and simulation of multifrequency induction hardening
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hömberg, Dietmar; Petzold, Thomas; Rocca, Elisabetta
    We study a model for induction hardening of steel. The related differential system consists of a time domain vector potential formulation of the Maxwells equations coupled with an internal energy balance and an ODE for the volume fraction of austenite, the high temperature phase in steel. We first solve the initial boundary value problem associated by means of a Schauder fixed point argument coupled with suitable a-priori estimates and regularity results. Moreover, we prove a stability estimate entailing, in particular, uniqueness of solutions for our Cauchy problem. We conclude with some finite element simulations for the coupled system.
  • Item
    A diffuse interface model for quasi-incrompressible flows : sharp interface limits and numerics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Aki, Gonca; Daube, Johannes; Dreyer, Wolfgang; Giesselmann, Jan; Kränkel, Mirko; Kraus, Christiane
    In this contribution, we investigate a diffuse interface model for quasi–incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn–Hilliard equation numerically by a Local Discontinuous Galerkin scheme.
  • Item
    Asymptotic analysis for Korteweg models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Dreyer, Wolfgang; Giesselmann, Jan; Kraus, Christiane; Rohde, Christiane
    This paper deals with a sharp interface limit of the isothermal Navier-Stokes-Korteweg system. The sharp interface limit is performed by matched asymptotic expansions of the fields in powers of the interface width. These expansions are considered in the interfacial region (inner expansions) and in the bulk (outer expansion) and are matched order by order. Particularly we consider the first orders of the corresponding inner equations obtained by a change of coordinates in an interfacial layer. For a specific scaling we establish solvability criteria for these inner equations and recover the results within the general setting of jump conditions for sharp interface models.
  • Item
    A large-deviations approach to gelation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Andreis, Luisa; König, Wolfgang; Patterson, Robert
    A @large-deviations principle (LDP) is derived for the state, at fixed time, of the multiplicative coalescent in the large particle number limit. The rate function is explicit and describes each of the three parts of the state: microscopic, mesoscopic and macroscopic. In particular, it clearly captures the well known gelation phase transition given by the formation of a particle containing a positive fraction of the system mass at time t = 1. Via a standard map of the multiplicative coalescent onto a time-dependent version of the Erdos-Rényi random graph, our results can also be rephrased as an LDP for the component sizes in that graph. Our proofs rely on estimates and asymptotics for the probability that smaller Erdos-Rényi graphs are connected.
  • Item
    On unwanted nucleation phenomena at the wall of a VGF chamber
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Dreyer, Wolfgang; Duderstadt, Frank; Eichler, Stefan; Naldzhieva, Margarita
    This is preliminary study on a phenomenon that happens during crystal growth of GaAs in a vertical gradient freeze (VGF) device. Here unwanted polycrystals nucleate at the chamber wall and move into the interior of the crystal. This happens within an undercooled region in the vicinity of the triple point, where the liquid-solid interface meets the chamber wall. The size and shape of that region is modelled by the Gibbs-Thomson law, which will be rederived in this paper. Hereafter we identify the crucial parameter, whose proper adjustment may minimize the undercooled region.
  • Item
    Surface induced phase separation of a swelling hydrogel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Hennessy, Matthew G.; Münch, Andreas; Wagner, Barbara
    We present a formulation of the free boundary problem for a hydrogel that accounts for the interfacial free energy and finite strain due to the large deformation of the polymer network during solvent transport across the free boundary. For the geometry of an initially dry layer fixed at a rigid substrate, our model predicts a phase transition when a critical value of the solvent concentration has been reached near the free boundary. A one-dimensional case study shows that depending on the flux rate at the free boundary an initial saturation front is followed by spinodal decomposition of the hydrogel and the formation of an interfacial front that moves through the layer. Moreover, increasing the shear modulus of the elastic network delays or even suppresses phase separation.
  • Item
    Low Mach asymptotic preserving scheme for the Euler-Korteweg model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Giesselmann, Jan
    We present an all speed scheme for the Euler-Korteweg model.We study a semi-implicit time-discretisation which treats the terms, which are stiff for low Mach numbers, implicitly and thereby avoids a dependence of the timestep restriction on the Mach number. Based on this we present a fully discrete finite difference scheme. In particular, the scheme is asymptotic preserving, i.e., it converges to a stable discretisation of the incompressible limit of the Euler-Korteweg model when the Mach number tends to zero.
  • Item
    Modelling compressible electrolytes with phase transition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dreyer, Wolfgang; Giesselmann, Jan; Kraus, Christiane
    A novel thermodynamically consistent diffuse interface model is derived for compressible electrolytes with phase transitions. The fluid mixtures may consist of N constituents with the phases liquid and vapor, where both phases may coexist. In addition, all constituents may consist of polarizable and magnetizable matter. Our introduced thermodynamically consistent diffuse interface model may be regarded as a generalized model of Allen-Cahn/Navier-Stokes/Poisson type for multi-component flows with phase transitions and electrochemical reactions. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. We consider two scaling regimes, i.e. a non-coupled and a coupled regime, where the coupling takes place between the smallness parameter in the Poisson equation and the width of the interface. We recover in the sharp interface limit a generalized Allen-Cahn/Euler/Poisson system for mixtures with electrochemical reactions in the bulk phases equipped with admissible interfacial conditions. The interfacial conditions satisfy, for instance, a generalized Gibbs-Thomson law and a dynamic Young-Laplace law.