Search Results

Now showing 1 - 10 of 550
  • Item
    Self-propelled micromotors for cleaning polluted water
    (Washington, DC : ACS, 2013) Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G.
    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
  • Item
    Origami-Inspired Shape Memory Folding Microactuator
    (Basel : MDPI, 2020) Seigner, Lena; Bezsmertna, Olha; Fähler, Sebastian; Tshikwand, Georgino; Wendler, Frank; Kohl, Manfred
    This paper presents the design, fabrication and performance of origami-based folding microactuators based on a cold-rolled NiTi foil of 20 µm thickness showing the one-way shape memory effect. Origami refers to a variety of techniques of transforming planar sheets into three-dimensional (3D) structures by folding, which has been introduced in science and engineering for, e.g., assembly and robotics. Here, NiTi microactuators are interconnected to rigid sections (tiles) forming an initial planar system that self-folds into a set of predetermined 3D shapes upon heating. While this concept has been demonstrated at the macro scale, we intend to transfer this concept into microtechnology by combining state-of-the art methods of micromachining. NiTi foils are micromachined by laser cutting or photolithography to achieve double-beam structures allowing for direct Joule heating with an electrical current. A thermo-mechanical treatment is used for shape setting of as-received specimens to reach a maximum folding angle of 180°. The bending moments, bending radii and load-dependent folding angles upon Joule heating are evaluated. The shape setting process is particularly effective for small bending radii, which, however generates residual plastic strain. After shape setting, unloaded beam structures show recoverable bending deflection between 0° and 140° for a maximum heating power of 900 mW. By introducing additional loads to account for the effect of the tiles, the smooth folding characteristic evolves into a sharp transition, whereby full deflection up to 180° is reached. The achieved results are an important step towards the development of cooperative multistable microactuator systems for 3D self-assembly.
  • Item
    The use of matrix-specific calibrations for oxygen in analytical glow discharge spectrometry
    (Dordrecht : Springer, 2014) Gonzalez-Gago, C.; Smid, P.; Hofmann, T.; Venzago, C.; Hoffmann, V.; Gruner, W.
    The performance of glow discharge optical emission spectroscopy and mass spectrometry for oxygen determination is investigated using a set of new conductive samples containing oxygen in the percent range in three different matrices (Al, Mg, and Cu) prepared by a sintering process. The sputtering rate corrected calibrations obtained at standard conditions for the 4 mm anode (700 V, 20 mA) in GD-OES are matrix independent for Mg and Al but not for Cu. The importance of a "blue shifted" line of oxygen at 130.22 nm (first reported by Köster) for quantitative analyses by GD-OES is confirmed. Matrix-specific calibrations for oxygen in GD-MS are presented. Two source concepts - fast flow (ELEMENT GD) and low gas flow (VG9000) - are evaluated obtaining higher sensitivity with the static flow source. Additional experiments using Ar-He mixtures or μs pulsed GD are carried out in ELEMENT GD aiming to improve the oxygen sensitivity.
  • Item
    Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics
    (Hoboken, NJ : Wiley, 2016) Williams, Derek E.; Dolgopolova, Ekaterina A.; Godfrey, Danielle C.; Ermolaeva, Evgeniya D.; Pellechia, Perry J.; Greytak, Andrew B.; Smith, Mark D.; Avdoshenko, Stanislav M.; Popov, Alexey A.; Shustova, Natalia B.
    Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.
  • Item
    Roles of hydrogenation, annealing and field in the structure and magnetic entropy change of Tb-based bulk metallic glasses
    (New York : American Institute of Physics, 2013) Luo, Qiang; Schwarz, Björn; Mattern, Norbert; Shen, Jun; Eckert, Jürgen
    The reduction of open-volume regions in Tb-based metallic glass (MG) by annealing and hydrogen charging was found to rearrange the atomic structure and tune the magnetic behaviors. After crystallization, the magnetic structure and magnetic entropy change (MEC) alters due to the structural transformation, and a plateau-like-MEC behavior can be obtained. The hydrogen concentration after charging at 1mA/cm2 for 576 h reaches as high as 3290 w-ppm. The magnetization behavior and the MEC change due to the modification of the exchange interaction and the random magnetic anisotropy (RMA) upon hydrogenation. At low temperatures, irreversible positive MEC was obtained, which is related to the internal entropy production. The RMA-to-exchange ratio acts as a switch to control the irreversible entropy production channel and the reversible entropy transfer channel. The field dependence of the MEC is discussed in term of the competition among Zeeman energy, exchange interaction and RMA.
  • Item
    Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment
    (New York : American Institute of Physics, 2012) Liu, Zengqian; Li, Ran; Liu, Gang; Song, Kaikai; Pauly, Simon; Zhang, Tao; Eckert, Jürgen
    Microstructures and mechanical properties of as-cast Cu47.5Zr47.5Al5 bulk metallic glass composites are optimized by appropriate remelting treatment of master alloys. With increasing remelting time, the alloys exhibit homogenized size and distribution of in situ formed B2 CuZr crystals. Pronounced tensile ductility of ∼13.6% and work-hardening ability are obtained for the composite with optimized microstructure. The effect of remelting treatment is attributed to the suppressed heterogeneous nucleation and growth of the crystalline phase from undercooled liquid, which may originate from the dissolution of oxides and nitrides as well as from the micro-scale homogenization of the melt.
  • Item
    High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: Study of defect structures and superconductivity properties
    (College Park, MD : American Institute of Physics, 2019) Bateni, A.; Erdem, E.; Häßler, W.; Somer, M.
    Nano sized magnesium diboride (MgB2) samples were synthesized using various high-quality nano-B precursor powders. The microscopic defect structures of MgB2 samples were systematically investigated using X-ray powder diffraction, Raman, resistivity measurements and electron paramagnetic resonance spectroscopy. A significant deviation in the critical temperature Tc was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. Scanning electron microscopy analysis demonstrate uniform and ultrafine morphology for the modified MgB2. Defect center in particular Mg vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.
  • Item
    Resistive switching in polycrystalline YMnO3 thin films
    (New York, NY : American Inst. of Physics, 2014) Bogusz, A.; Müller, A.D.; Blaschke, D.; Skorupa, I.; Bürger, D.; Scholz, A.; Schmidt, O.G.; Schmidt, H.
    We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.
  • Item
    Stimuli‐responsive microjets with reconfigurable shape
    (Hoboken, NJ : Wiley, 2014) Magdanz, Veronika; Stoychev, Georgi; Ionov, Leonid; Sanchez, Samuel; Schmidt, Oliver.G.
    Flexible thermoresponsive polymeric microjets are formed by the self‐folding of polymeric layers containing a thin Pt film used as catalyst for self‐propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self‐propulsion at the microscale, and also for biorelated applications.
  • Item
    High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes
    (Hoboken, NJ : Wiley, 2015) Lu, Xueyi; Deng, Junwen; Si, Wenping; Sun, Xiaolei; Liu, Xianghong; Liu, Bo; Liu, Lifeng; Oswald, Steffen; Baunack, Stefan; Grafe, Hans Joachim; Yan, Chenglin; Schmidt, Oliver G.
    Trilayered Pd/MnOx/Pd nanomembranes are fabricated as the cathode catalysts for Li‐O2 batteries. The combination of Pd and MnOx facilitates the transport of electrons, lithium ions, and oxygen‐containing intermediates, thus effectively decomposing the discharge product Li2O2 and significantly lowering the charge overpotential and enhancing the power efficiency. This is promising for future environmentally friendly applications.