Search Results

Now showing 1 - 4 of 4
  • Item
    In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors
    (San Francisco, CA : Public Library of Science, 2012) Lescarbeau, R.M.; Seib, F.P.; Prewitz, M.; Werner, C.; Kaplan, D.L.
    The spread of prostate cancer cells to the bone marrow microenvironment and castration resistant growth are key steps in disease progression and significant sources of morbidity. However, the biological significance of mesenchymal stem cells (MSCs) and bone marrow derived extracellular matrix (BM-ECM) in this process is not fully understood. We therefore established an in vitro engineered bone marrow tissue model that incorporates hMSCs and BM-ECM to facilitate mechanistic studies of prostate cancer cell survival in androgen-depleted media in response to paracrine factors and BM-ECM. hMSC-derived paracrine factors increased LNCaP cell survival, which was in part attributed to IGFR and IL6 signaling. In addition, BM-ECM increased LNCaP and MDA-PCa-2b cell survival in androgen-depleted conditions, and induced chemoresistance and morphological changes in LNCaPs. To determine the effect of BM-ECM on cell signaling, the phosphorylation status of 46 kinases was examined. Increases in the phosphorylation of MAPK pathway-related proteins as well as sustained Akt phosphorylation were observed in BM-ECM cultures when compared to cultures grown on plasma-treated polystyrene. Blocking MEK1/2 or the PI3K pathway led to a significant reduction in LNCaP survival when cultured on BM-ECM in androgen-depleted conditions. The clinical relevance of these observations was determined by analyzing Erk phosphorylation in human bone metastatic prostate cancer versus non-metastatic prostate cancer, and increased phosphorylation was seen in the metastatic samples. Here we describe an engineered bone marrow model that mimics many features observed in patients and provides a platform for mechanistic in vitro studies.
  • Item
    The novel arylindolylmaleimide PDA-66 displays pronounced antiproliferative effects in acute lymphoblastic leukemia cells
    (London : BioMed Central, 2014) Kretzschmar, C.; Roolf, C.; Langhammer, T.-S.; Sekora, A.; Pews-Davtyan, A.; Beller, M.; Frech, M.J.; Eisenlöffel, C.; Rolfs, A.; Junghanss, C.
    Background: Prognosis of adult patients suffering from acute lymphoblastic leukemia (ALL) is still unsatisfactory. Targeted therapy via inhibition of deregulated signaling pathways appears to be a promising therapeutic option for the treatment of ALL. Herein, we evaluated the influence of a novel arylindolylmaleimide (PDA-66), a potential GSK3β inhibitor, on several ALL cell lines.Methods: ALL cell lines (SEM, RS4;11, Jurkat and MOLT4) were exposed to different concentrations of PDA-66. Subsequently, proliferation, metabolic activity, apoptosis and necrosis, cell cycle distribution and protein expression of Wnt and PI3K/Akt signaling pathways were analyzed at different time points.Results: PDA-66 inhibited the proliferation of ALL cells significantly by reduction of metabolic activity. The 72 h IC50 values ranged between 0.41 to 1.28 μM PDA-66. Additionally, caspase activated induction of apoptosis could be detected in the analyzed cell lines. PDA-66 influenced the cell cycle distribution of ALL cell lines differently. While RS4;11 and MOLT4 cells were found to be arrested in G2 phase, SEM cells showed an increased cell cycle in G0/1 phase.Conclusion: PDA-66 displays significant antileukemic activity in ALL cells and classifies as candidate for further evaluation as a potential drug in targeted therapy of ALL.
  • Item
    Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes
    (New York, NY : Hindawi, 2013) Haertel, B.; StraĂźenburg, S.; Oehmigen, K.; Wende, K.; Von Woedtke, T.; Lindequist, U.
    Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.
  • Item
    Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo
    (London : BioMed Central, 2012) Partecke, L.I.; Evert, K.; Haugk, J.; Doering, F.; Normann, L.; Diedrich, S.; Weiss, F.-U.; Evert, M.; Huebner, N.O.; Guenther, C.; Heidecke, C.D.; Kramer, A.; Bussiahn, R.; Weltmann, K.-D.; Pati, O.; Bender, C.; von Bernstorff, W.
    Background: The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas.Methods: We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357.Results: TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/-0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/-4.4% of dead cells (untreated control) versus 78.0+/-9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/-7.2%, p=0.0009 versus 12.3+/-6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/-12.3ÎĽm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/-13.2% versus 37.7+/-14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP.Conclusions: Our data suggest possible future intra-operative applications of TTP to reduce microscopic residual disease in pancreatic cancer resections. Further promising applications include other malignancies (central liver/lung tumours) as well as synergistic effects combining TTP with chemotherapies. Yet, adaptations of plasma sources as well as of the composition of effective components of TTP are required to optimize their synergistic apoptotic actions.