Search Results

Now showing 1 - 10 of 36
  • Item
    Liquid sensing: Smart polymer/CNT composites
    (Amsterdam [u.a.] : Elsevier, 2011) Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P.
    Today polymer/carbon nanotube (CNT) composites can be found in sports equipment, cars, and electronic devices. The growth of old and new markets in this area has been stimulated by our increased understanding of relevant production and processing methods, as well as the considerable price reduction of industrial CNT grades. In particular, CNT based electrically conductive polymer composites (CPCs) offer a range of opportunities because of their unique property profile; they demonstrate low specific gravity in combination with relatively good mechanical properties and processability. The electrical conductivity of polymer/CNT composites results from a continuous filler network that can be affected by various external stimuli, such as temperature shifts, mechanical deformations, and the presence of gases and vapors or solvents. Accordingly, CNT based CPCs represent promising candidates for the design of smart components capable of integrated monitoring. In this article we focus on their use as leakage detectors for organic solvents.
  • Item
    Processing metallic glasses by selective laser melting
    (Amsterdam [u.a.] : Elsevier, 2013) Pauly, S.; Löber, L.; Petters, R.; Stoica, M.; Scudino, S.; Kühn, U.; Eckert, J.
    Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs), can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processing routes, such as casting, melt spinning or gas atomization, have intrinsic limitations regarding the complexity and dimensions of the geometries. Here, it is shown that selective laser melting (SLM), which is usually used to process conventional metallic alloys and polymers, can be applied to implement complex geometries and components from an Fe-base metallic glass. This approach is in principle viable for a large variety of metallic alloys and paves the way for the novel synthesis of materials and the development of parts with advanced functional and structural properties without limitations in size and intricacy.
  • Item
    Laser-Induced front Side Etching: An Easy and Fast Method for Sub-μm Structuring of Dielectrics
    (Amsterdam [u.a.] : Elsevier, 2012) Lorenz, P.; Ehrhardt, M.; Zimmer, K.
    Laser-induced front side etching (LIFE) is a method for the nanometer-precision structuring of dielectrics, e.g. fused silica, using thin metallic as well as organic absorber layer attached to the laser-irradiated front side of the sample. As laser source an excimer laser with a wavelength of 248 nm and an pulse duration of 25 ns was used. For sub-μm patterning a phase mask illuminated by the top hat laser beam was projected by a Schwarzschild objective. The LIFE process allows the fabrication of well-defined and smooth surface structures with sub-μm lateral etching regions (Δx < 350 nm) and vertical etching depths from 1 nm to sub-mm.
  • Item
    Laser structuring of thin layers for flexible electronics by a shock wave-induced delamination process
    (Amsterdam [u.a.] : Elsevier, 2014) Lorenz, P.; Ehrhardt, M.; Zimmer, K.
    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
  • Item
    Josephson and tunneling junctions with thin films of iron based superconductors
    (Amsterdam [u.a.] : Elsevier, 2012) Schmidt, S.; Döring, S.; Tympel, V.; Schmidl, F.; Haindl, S.; Iida, K.; Holzapfel, B.; Seidel, P.
    We produced planar hybrid Superconductor - Normal metal - Superconductor (SNS') junctions and interfaceengineered edge junctions (SN'S' or SIS' with normal metal (N') or insulating (I) barrier) with various areas using Co-doped Ba-122 as base electrode. Varying the thickness of the Normal metal (gold) barrier of the planar junctions, we can either observe Josephson behavior at thinner gold thicknesses or transport dominated by Andreev reflection. The edge junctions seem to form a SN'S'-contact.
  • Item
    Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing
    (Amsterdam [u.a.] : Elsevier, 2014) Ehrhardt, M.; Lorenz, P.; Lotnyk, A.; Romanus, H.; Thelander, E.; Zimmer, K.
    Laser embossing allows the micron and submicron patterning of metal substrates that is of great interest in a wide range of applications. This replication process enables low-cost patterning of metallic materials by non-thermal, high-speed forming which is driven by laser-induced shock waves. In this study the surface topography characteristics as well as the material structure at laser embossing of sub-micrometre gratings into solid copper is presented. The topography of the laser-embossed copper pattern is analysed with atomic force microscopy (AFM) in comparison to the master surface. The height of the embossed structures and the replicated pattern fidelity increases up to a laser fluence of F ∼ 10 J/cm2. For higher laser fluences the height of the embossed structures saturates at 75% of the master pattern height and the shape is adequate to the master. Structural modifications in the copper mono crystals after the laser embossing process were investigated with transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Almost no modifications were detected. The residual stress after laser embossing of 32 MPa (F = 30 J/cm2) has only a limited influence on the surface pattern formation.
  • Item
    BaFe2As2/Fe bilayers with [001]-tilt grain boundary on MgO and SrTiO3 bicrystal substrates
    (Amsterdam [u.a.] : Elsevier, 2013) Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.
    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl 2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.
  • Item
    In-process evaluation of electrical properties of CIGS solar cells scribed with laser pulses of different pulse lengths
    (Amsterdam [u.a.] : Elsevier, 2014) Zimmer, K.; Wang, X.; Lorenz, P.; Bayer, L.; Ehrhardt, M.; Scheit, C.; Braun, A.
    The optimization of laser scribing for the interconnection of CIGS solar cells is a current focus of laser process development. In addition to the geometry of the laser scribes the impact of the laser patterning to the electrical properties of the solar cells has to be optimized with regards to the scribing process and the laser sources. In-process measurements provide an approach for reliable evaluation of the electrical characteristics. In particular, the parallel resistance Rp that was calculated from the measured I-V curves was measured in dependence on the scribing parameters of a short-pulsed ns laser in comparison to a standard ps laser at a wavelength of 1.06 μm. With low pulse overlap of ∼ 20% a reduction of Rp to 2/3 of the initial value has been achieved for ns laser pulses. In comparison to ps laser slightly more defects were observed at the investigated parameter range.
  • Item
    Combinatorial synthesis of (YxGd1-x)Ba2Cu3Ox superconducting thin films
    (Amsterdam [u.a.] : Elsevier, 2012) Kirchner, A.; Erbe, M.; Freudenberg, T.; Hühne, R.; Feys, J.; Van Driessche, I.; Schultz, L.; Holzapfel, B.
    Environmentally friendly water-based YBa2Cu3Ox (YBCO) and GdBa2Cu3Ox (GdBCO) precursor solutions were synthesized to realize thin films by chemical solution deposition. Pure YBCO and GdBCO precursor solutions were used for ink plotting on SrTiO3 substrates and subsequent thermal treatment at the corresponding crystallization temperature. Phase formation of Gd123 requires a higher crystallization temperature of 840 °C compared to the Y123 phase. The critical temperature of YBCO films is about 92 K with a sharp transition into the superconducting state. Micro liter sized ink volumes of YBCO and GdBCO were successfully mixed for two-dimensional ink plotting of a (YxGd1-x)Ba2Cu3Ox film library. A homogeneous surface and no indication of a-axis growth were found in all mixed films.
  • Item
    Formation dynamics of ultra-short laser induced micro-dots in the bulk of transparent materials
    (Amsterdam [u.a.] : Elsevier, 2013) Mermillod-Blondin, A.; Ashkenasi, D.; Lemke, A.; Schwagmeier, M.; Rosenfeld, A.
    In this paper, we study the formation dynamics of ultra-short laser-induced micro dots under the surface of transparent materials. Laser-induced micro dots find their application in direct part marking, to address full life cycle traceability. We first demonstrate the possibility of direct laser part marking into the cladding of an optical fiber. Then, we monitor the laser affected zone with the help of a time-resolved phase contrast microscopy setup in a fused silica substrate. We show that the transient energy relaxation processes affect the host material over a region that exceeds the micro dot size by several micrometers.