Search Results

Now showing 1 - 10 of 585
  • Item
    2-hydroxyethylammonium iodide
    (Chester : International Union of Crystallography, 2014) Kohrt, C.; Spannenberg, A.; Werner, T.
    In the crystal structure of the title salt, C2H 8NO+·I-, N-H⋯O, N-H⋯I and O-H⋯I hydrogen bonds lead to the formation of layers staggered along the c axis.
  • Item
    (Cyanido-κC)(2,2-diphenylacetamido-κ2 N,O)bis(η5-pentamethylcyclopentadienyl)zirconium(IV)
    (Chester : International Union of Crystallography, 2014) Becker, L.; Spannenberg, A.; Arndt, P.; Rosenthal, U.
    In the title compound, [Zr(C10H15)2(C14H12NO)(CN)], the ZrIV atom is coordinated by two pentamethylcyclopentadienyl ligands, the amidate ligand via the N and O atoms, and an additional C N ligand. The four-membered metallacycle is nearly planar (r.m.s. deviation = 0.008Å). In the crystal, the molecules are connected into centrosymmetric dimers via pairs of N - HN hydrogen bonds.
  • Item
    Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp
    (Amsterdam : Elsevier, 2014) Wählisch, Felix C.; Peter, Nicolas J.; Torrents Abad, Oscar; Oliveira, Mariana V.G.; Schneider, Andreas S.; Schmahl, Wolfgang; Griesshaber, Erika; Bennewitz, Roland
    We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell.
  • Item
    Dynamic publication formats and collaborative authoring
    (Cham : Springer, 2014) Heller, Lambert; The, Ronald; Bartling, Sönke; Bartling, Sönke; Friesike, Sascha
    While Online Publishing has replaced most traditional printed journals in less than twenty years, today’s Online Publication Formats are still closely bound to the medium of paper. Collaboration is mostly hidden from the readership, and ‘final’ versions of papers are stored in ‘publisher PDF’ files mimicking print. Meanwhile new media formats originating from the web itself bring us new modes of transparent collaboration, feedback, continued refinement, and reusability of (scholarly) works: Wikis, Blogs and Code Repositories, to name a few. This chapter characterizes the potentials of Dynamic Publication Formats and analyzes necessary prerequisites. Selected tools specific to the aims, stages, and functions of Scholarly Publishing are presented. Furthermore, this chapter points out early examples of usage and further development from the field. In doing so, Dynamic Publication Formats are described as (a) a ‘parallel universe’ based on the commodification of (scholarly) media, and (b) as a much needed complement, slowly recognized and incrementally integrated into more efficient and dynamic workflows of production, improvement, and dissemination of scholarly knowledge in general.
  • Item
    The use of matrix-specific calibrations for oxygen in analytical glow discharge spectrometry
    (Dordrecht : Springer, 2014) Gonzalez-Gago, C.; Smid, P.; Hofmann, T.; Venzago, C.; Hoffmann, V.; Gruner, W.
    The performance of glow discharge optical emission spectroscopy and mass spectrometry for oxygen determination is investigated using a set of new conductive samples containing oxygen in the percent range in three different matrices (Al, Mg, and Cu) prepared by a sintering process. The sputtering rate corrected calibrations obtained at standard conditions for the 4 mm anode (700 V, 20 mA) in GD-OES are matrix independent for Mg and Al but not for Cu. The importance of a "blue shifted" line of oxygen at 130.22 nm (first reported by Köster) for quantitative analyses by GD-OES is confirmed. Matrix-specific calibrations for oxygen in GD-MS are presented. Two source concepts - fast flow (ELEMENT GD) and low gas flow (VG9000) - are evaluated obtaining higher sensitivity with the static flow source. Additional experiments using Ar-He mixtures or μs pulsed GD are carried out in ELEMENT GD aiming to improve the oxygen sensitivity.
  • Item
    Resistive switching in polycrystalline YMnO3 thin films
    (New York, NY : American Inst. of Physics, 2014) Bogusz, A.; Müller, A.D.; Blaschke, D.; Skorupa, I.; Bürger, D.; Scholz, A.; Schmidt, O.G.; Schmidt, H.
    We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.
  • Item
    Stimuli‐responsive microjets with reconfigurable shape
    (Hoboken, NJ : Wiley, 2014) Magdanz, Veronika; Stoychev, Georgi; Ionov, Leonid; Sanchez, Samuel; Schmidt, Oliver.G.
    Flexible thermoresponsive polymeric microjets are formed by the self‐folding of polymeric layers containing a thin Pt film used as catalyst for self‐propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self‐propulsion at the microscale, and also for biorelated applications.
  • Item
    Schottky contacts to In2O3
    (New York : American Institute of Physics, 2014) von Wenckstern, H.; Splith, D.; Schmidt, F.; Grundmann, M.; Bierwagen, O.; Speck, J.S.
    n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
  • Item
    Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe
    (Dordrecht : Springer, 2014) Stagl, J.; Mayr, E.; Koch, H.; Hattermann, F.F.; Huang, S.
    For the management of protected areas knowledge about the water regime plays a very important role, in particular in areas with lakes, wetlands, marches or floodplains. The local hydrological conditions depend widely on temporal and spatial variations of the main components of the hydrologic cycle and physiographic conditions on site. To preserve a favourable conservation status under changing climatic conditions park managers require information about potential impacts of climate change in their area. The following chapter provides an overview of how climate change affects the hydrological regimes in Central and Eastern Europe. The hydrological impacts for the protected areas are area-specific and vary from region to region. Generally, an increase in temperature enhances the moisture holding capacity of the atmosphere and thus, leads to an intensification of the hydrological cycle. Key changes in the hydrological system include alterations in the seasonal distribution, magnitude and duration of precipitation and evapotranspiration. This may lead to changes in the water storage, surface runoff, soil moisture and seasonal snow packs as well as to modifications in the mass balance of Central European glaciers. Partly, water resources management can help to counterbalance effects of climate change on stream flow and water availability.
  • Item
    (η6-Benzene)(carbonato-κ2O,O') [dicyclohexyl(naphthalen-1-ylmethyl)phosphanejP] ruthenium(II) chloroform trisolvate
    (Chester : International Union of Crystallography, 2014) Gowrisankar, S.; Neumann, H.; Spannenberg, A.; Beller, M.
    The title compound, [Ru(CO3)(η6-C 6H6){(C6H11)2P(CH 2-C10H7)}]-3CHCl3, was synthesized by carbonation of [RuCl2-(η6-C6H 6){(C6H11)2P(CH2C 10H7)}] with NaHCO3in methanol at room temperature. The RuIIatom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C-H⋯O and C-H⋯Cl hydrogen-bonding interactions between adjacent metal complexes and between the complexes and the solvent molecules. The asymmetric unit contains one metal complex and three chloroform solvent molecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloroform solvent molecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON.