Search Results

Now showing 1 - 10 of 48
  • Item
    Blind Super-Resolution Approach for Exploiting Illumination Variety in Optical-Lattice Illumination Microscopy
    (Washington, DC : ACS Publications, 2021) Samanta, Krishnendu; Sarkar, Swagato; Acuña, Sebastian; Joseph, Joby; Ahluwalia, Balpreet Singh; Agarwal, Krishna
    Optical-lattice illumination patterns help in pushing high spatial frequency components of the sample into the optical transfer function of a collection microscope. However, exploiting these high-frequency components require precise knowledge of illumination if reconstruction approaches similar to structured illumination microscopy are employed. Here, we present an alternate blind reconstruction approach that can provide super-resolution without the requirement of extra frames. For this, the property of exploiting temporal fluctuations in the sample emissions using “multiple signal classification algorithm” is extended aptly toward using spatial fluctuation of phase-modulated lattice illuminations for super-resolution. The super-resolution ability is shown for sinusoidal and multiperiodic lattice with approximately 3- and 6-fold resolution enhancements, respectively, over the diffraction limit. © 2021 The Authors. Published by American Chemical Society
  • Item
    Remarkable Mechanochromism in Blends of a π-Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation
    (Weinheim : Wiley-VCH, 2020) Zessin, Johanna; Schnepf, Max; Oertel, Ulrich; Beryozkina, Tetyana; König, Tobias A.F.; Fery, Andreas; Mertig, Michael; Kiriy, Anton
    A novel mechanism for well-pronounced mechanochromism in blends of a π-conjugated polymer based on reversible conformational transitions of a chromophore rather than caused by its aggregation state, is exemplified. Particularly, a strong stretching-induced bathochromic shift of the light absorption, or hypsochromic shift of the emission, is found in blends of the water-soluble poly(3-tri(ethylene glycol)) (P3TEOT) embedded into the matrix of thermoplastic polyvinyl alcohol. This counterintuitive phenomenon is explained in terms of the concentration dependency of the P3TEOT's aggregation state, which in turn results in different molecular conformations and optical properties. A molecular flexibility, provided by low glass transition temperature of P3TEOT, and the fact that P3TEOT adopts an intermediate, moderately planar conformation in the solid state, are responsible for the unusual complex mechanochromic behavior. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces
    (Weinheim : Wiley-VCH, 2019) Mayer, Martin; Schnepf, Max J.; König, Tobias A.F.; Fery, Andreas
    Metallic nanostructures exhibit strong interactions with electromagnetic radiation, known as the localized surface plasmon resonance. In recent years, there is significant interest and growth in the area of coupled metallic nanostructures. In such assemblies, short- and long-range coupling effects can be tailored and emergent properties, e.g., metamaterial effects, can be realized. The term “plasmonic metasurfaces” is used for this novel class of assemblies deposited on planar surfaces. Herein, the focus is on plasmonic metasurfaces formed from colloidal particles. These are formed by self-assembly and can meet the demands of low-cost manufacturing of large-area, flexible, and ultrathin devices. The advances in high optical quality of the colloidal building blocks and methods for controlling their self-assembly on surfaces will lead to novel functional devices for dynamic light modulators, pulse sharpening, subwavelength imaging, sensing, and quantum devices. This progress report focuses on predicting optical properties of single colloidal building blocks and their assemblies, wet-chemical synthesis, and directed self-assembly of colloidal particles. The report concludes with a discussion of the perspectives toward expanding the colloidal plasmonic metasurfaces concept by integrating them with quantum emitters (gain materials) or mechanically responsive structures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Lightweight polymer-carbon composite current collector for lithium-ion batteries
    (Basel : MDPI, 2020) Fritsch, Marco; Coeler, Matthias; Kunz, Karina; Krause, Beate; Marcinkowski, Peter; Pötschke, Petra; Wolter, Mareike; Michaelis, Alexander
    A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Cell-Instructive Multiphasic Gel-in-Gel Materials
    (Weinheim : Wiley-VCH, 2020) Kühn, Sebastian; Sievers, Jana; Stoppa, Aukha; Träber, Nicole; Zimmermann, Ralf; Welzel, Petra B.; Werner, Carsten
    Developing tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell-instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue- and organ-specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel-in-gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis
    (Weinheim : Wiley-VCH, 2021) Gupta, Vaibhav; Sarkar, Swagato; Aftenieva, Olha; Tsuda, Takuya; Kumar, Labeesh; Schletz, Daniel; Schultz, Johannes; Kiriy, Anton; Fery, Andreas; Vogel, Nicolas; König, Tobias A.F.
    Imprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Tuning the Local Availability of VEGF within Glycosaminoglycan-Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis
    (Weinheim : Wiley-VCH, 2020) Limasale, Yanuar Dwi Putra; Atallah, Passant; Werner, Carsten; Freudenberg, Uwe; Zimmermann, Ralf
    Incorporation of sulfated glycosaminoglycans (GAGs) into cell-instructive polymer networks is shown to be instrumental in controlling the diffusivity and activity of growth factors. However, a subtle balance between local retention and release of the factors is needed to effectively direct cell fate decisions. To quantitatively unravel material characteristics governing these key features, the GAG content and the GAG sulfation pattern of star-shaped poly(ethylene glycol) (starPEG)–GAG hydrogels are herein tuned to control the local availability and bioactivity of GAG-affine vascular endothelial growth factor (VEGF165). Hydrogels containing varying concentrations of heparin or heparin derivatives with different sulfation pattern are prepared and thoroughly characterized for swelling, mechanical properties, and growth factor transport. Mathematical models are developed to predict the local concentration and spatial distribution of free and bound VEGF165 within the gel matrices. The results of simulation and experimental studies concordantly reveal how the GAG concentration and sulfation pattern determine the local availability of VEGF165 within the cell-instructive hydrogels and how the factor—in interplay with cell-instructive gel properties—determines the formation and spatial organization of capillary networks of embedded human vascular endothelial cells. Taken together, this study exemplifies how mathematical modeling and rational hydrogel design can be combined to pave the way for precision tissue engineering. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Carboxylated nitrile butadiene rubber/hybrid filler composites
    (São Carlos : Universidade Federal de São Carlos, 2012) Mousa, A.; Heinrich, G.; Simon, F.; Wagenknecht, U.; Stöckelhuber, K.-W.; Dweiri, R.
    The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS) of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH). Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR) to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR) of the composites. The degree of curing ΔM (maximum torque-minimum torque) as a function of hybrid filler as derived from moving die rheometer (MDR) is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA) is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM).
  • Item
    Topographical anisotropy and wetting of ground stainless steel surfaces
    (Basel : MDPI AG, 2012) Calvimontes, A.; Mauermann, M.; Bellmann, C.
    Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.
  • Item
    Advances for the topographic characterisation of SMC materials
    (Basel : MDPI, 2009) Calvimontes, A.; Grundke, K.; Müller, A.; Stamm, M.
    For a comprehensive study of Sheet Moulding Compound (SMC) surfaces, topographical data obtained by a contact-free optical method (chromatic aberration confocal imaging) were systematically acquired to characterise these surfaces with regard to their statistical, functional and volumetrical properties. Optimal sampling conditions (cut-off length and resolution) were obtained by a topographical-statistical procedure proposed in the present work. By using different length scales specific morphologies due to the influence of moulding conditions, metallic mould topography, glass fibre content and glass fibre orientation can be characterized. The aim of this study is to suggest a systematic topographical characterization procedure for composite materials in order to study and recognize the influence of production conditions on their surface quality. © 2009 by the authors.