Search Results

Now showing 1 - 10 of 142
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    Blind Super-Resolution Approach for Exploiting Illumination Variety in Optical-Lattice Illumination Microscopy
    (Washington, DC : ACS Publications, 2021) Samanta, Krishnendu; Sarkar, Swagato; Acuña, Sebastian; Joseph, Joby; Ahluwalia, Balpreet Singh; Agarwal, Krishna
    Optical-lattice illumination patterns help in pushing high spatial frequency components of the sample into the optical transfer function of a collection microscope. However, exploiting these high-frequency components require precise knowledge of illumination if reconstruction approaches similar to structured illumination microscopy are employed. Here, we present an alternate blind reconstruction approach that can provide super-resolution without the requirement of extra frames. For this, the property of exploiting temporal fluctuations in the sample emissions using “multiple signal classification algorithm” is extended aptly toward using spatial fluctuation of phase-modulated lattice illuminations for super-resolution. The super-resolution ability is shown for sinusoidal and multiperiodic lattice with approximately 3- and 6-fold resolution enhancements, respectively, over the diffraction limit. © 2021 The Authors. Published by American Chemical Society
  • Item
    Remarkable Mechanochromism in Blends of a π-Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation
    (Weinheim : Wiley-VCH, 2020) Zessin, Johanna; Schnepf, Max; Oertel, Ulrich; Beryozkina, Tetyana; König, Tobias A.F.; Fery, Andreas; Mertig, Michael; Kiriy, Anton
    A novel mechanism for well-pronounced mechanochromism in blends of a π-conjugated polymer based on reversible conformational transitions of a chromophore rather than caused by its aggregation state, is exemplified. Particularly, a strong stretching-induced bathochromic shift of the light absorption, or hypsochromic shift of the emission, is found in blends of the water-soluble poly(3-tri(ethylene glycol)) (P3TEOT) embedded into the matrix of thermoplastic polyvinyl alcohol. This counterintuitive phenomenon is explained in terms of the concentration dependency of the P3TEOT's aggregation state, which in turn results in different molecular conformations and optical properties. A molecular flexibility, provided by low glass transition temperature of P3TEOT, and the fact that P3TEOT adopts an intermediate, moderately planar conformation in the solid state, are responsible for the unusual complex mechanochromic behavior. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder
    (Weinheim : Wiley-VCH Verlag, 2020) Hartmann, Wladick; Varytis, Paris; Gehring, Helge; Walter, Nicolai; Beutel, Fabian; Busch, Kurt; Pernice, Wolfram
    Compact, on-chip spectrometers exploiting tailored disorder for broadband light scattering enable high-resolution signal analysis while maintaining a small device footprint. Due to multiple scattering events of light in the disordered medium, the effective path length of the device is significantly enhanced. Here, on-chip spectrometers are realized for visible and near-infrared wavelengths by combining an efficient broadband fiber-to-chip coupling approach with a scattering area in a broadband transparent silicon nitride waveguiding structure. Air holes etched into a structured silicon nitride slab terminated with multiple waveguides enable multipath light scattering in a diffusive regime. Spectral-to-spatial mapping is performed by determining the transmission matrix at the waveguide outputs, which is then used to reconstruct the probe signals. Direct comparison with theoretical analyses shows that such devices can be used for high-resolution spectroscopy from the visible up to the telecom wavelength regime. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Narrow Stimulated Resonance Raman Scattering and WGM Lasing in Small Conjugated Polymer Particles for Live Cell Tagging and Tracking
    (Weinheim : Wiley-VCH, 2020) Haehnle, Bastian; Lamla, Markus; Sparrer, Konstantin M.J.; Gather, Malte C.; Kuehne, Alexander J.C.
    Conjugated polymer particles are brightly fluorescing and stable materials for live cell imaging. Combination of conjugated polymers with a whispering gallery mode (WGM) resonator allows laser emission from microscale particles. Once internalized by cells, the mode pattern of the laser emission can be used for tagging and tracking, as each laser spectrum represents a bar code to identify individual cells. However, currently these particle systems are limited by their large size, which might interfere with cellular functions. Here, stimulated resonance Raman scattering (SRRS) in small conjugated polymer microparticles is presented as a new method for generating narrow emission as an alternative to WGM-based laser emission. This opens up spectral range for multiplexing optical readout and multicolor imaging of live cells. The synthesis of monodisperse micrometer-sized poly(fluorene-co-divinylbenzene) particles is discussed and their WGM and SRRS emission are characterized. Finally, how these particles and their emission can be employed in live cell imaging and tagging is showcased. © 2020 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces
    (Weinheim : Wiley-VCH, 2020) Michel, Ann-Katrin U.; Meyer, Sebastian; Essing, Nicolas; Lassaline, Nolan; Lightner, Carin R.; Bisig, Samuel; Norris, David J.; Chigrin, Dmitry N.
    Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs) are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and restricts device miniaturization. Thermal scanning-probe-induced local switching of the PCM germanium telluride is proposed to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. The design is based on a planar multilayer and does not require fabrication of protruding resonators as commonly applied in the literature. Instead, it is numerically demonstrated that a broad-band tuning of perfect absorption can be realized by the localized tip-induced crystallization of the PCM. The spectral response of the metasurface is explained using resonance mode analysis and numerical simulations. To facilitate experimental realization, a theoretical description of the tip-induced crystallization employing multiphysics simulations is provided to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. The concept can be applied not only for plasmonic sensing and spatial frequency filtering, but also be transferred to all-dielectric metasurfaces. © 2020 Wiley-VCH GmbH
  • Item
    A 310 nm Optically Pumped AlGaN Vertical-Cavity Surface-Emitting Laser
    (Washington, DC : ACS Publications, 2021) Hjort, Filip; Enslin, Johannes; Cobet, Munise; Bergmann, Michael A.; Gustavsson, Johan; Kolbe, Tim; Knauer, Arne; Nippert, Felix; Häusler, Ines; Wagner, Markus R.; Wernicke, Tim; Kneissl, Michael; Haglund, Åsa
    Ultraviolet light is essential for disinfection, fluorescence excitation, curing, and medical treatment. An ultraviolet light source with the small footprint and excellent optical characteristics of vertical-cavity surface-emitting lasers (VCSELs) may enable new applications in all these areas. Until now, there have only been a few demonstrations of ultraviolet-emitting VCSELs, mainly optically pumped, and all with low Al-content AlGaN cavities and emission near the bandgap of GaN (360 nm). Here, we demonstrate an optically pumped VCSEL emitting in the UVB spectrum (280-320 nm) at room temperature, having an Al0.60Ga0.40N cavity between two dielectric distributed Bragg reflectors. The double dielectric distributed Bragg reflector design was realized by substrate removal using electrochemical etching. Our method is further extendable to even shorter wavelengths, which would establish a technology that enables VCSEL emission from UVA (320-400 nm) to UVC (<280 nm). © 2020 American Chemical Society. All rights reserved.
  • Item
    Magnetic Hysteresis at 10 K in Single Molecule Magnet Self‐Assembled on Gold
    (Weinheim : Wiley-VCH, 2021) Chen, Chia-Hsiang; Spree, Lukas; Koutsouflakis, Emmanouil; Krylov, Denis S.; Liu, Fupin; Brandenburg, Ariane; Velkos, Georgios; Schimmel, Sebastian; Avdoshenko, Stanislav M.; Federov, Alexander; Weschke, Eugen; Choueikani, Fadi; Ohresser, Philippe; Dreiser, Jan; Büchner, Bernd; Popov, Alexey A.
    Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low‐dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self‐assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene‐SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X‐ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self‐assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self‐assembly of fullerene‐SMM derivatives offers a facile solution‐based procedure for the preparation of functional magnetic sub‐monolayers with excellent SMM performance.
  • Item
    Tunable Circular Dichroism by Photoluminescent Moiré Gratings
    (Weinheim : Wiley-VCH, 2020) Aftenieva, Olha; Schnepf, Max; Mehlhorn, Börge; König, Tobias A.F.
    In nanophotonics, there is a current demand for ultrathin, flexible nanostructures that are simultaneously easily tunable, demonstrate a high contrast, and have a strong response in photoluminescent polarization. In this work, the template-assisted self-assembly of water-dispersed colloidal core–shell quantum dots into 1D light-emitting sub-micrometer gratings on a flexible substrate is demonstrated. Combining such structures with a light-absorbing metallic counterpart by simple stacking at various angles results in a tunable Moiré pattern with strong lateral contrast. Furthermore, a combination with an identical emitter-based grating leads to a chiroptical effect with a remarkably high degree of polarization of 0.72. Such a structure demonstrates direct circular polarized photoluminescence, for the first time, without a need for an additional chiral template as an intermediary. The suggested approach allows for reproducible, large-area manufacturing at reasonable costs and is of potential use for chiroptical sensors, photonic circuit applications, or preventing counterfeit. © 2020 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
  • Item
    Analysis of catalyst surface wetting: The early stage of epitaxial germanium nanowire growth
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Ernst, Owen C.; Lange, Felix; Uebel, David; Teubner, Thomas; Boeck, Torsten
    The dewetting process is crucial for several applications in nanotechnology. Even though not all dewetting phenomena are fully understood yet, especially regarding metallic fluids, it is clear that the formation of nanometre-sized particles, droplets, and clusters as well as their movement are strongly linked to their wetting behaviour. For this reason, the thermodynamic stability of thin metal layers (0.1-100 nm) with respect to their free energy is examined here. The decisive factor for the theoretical considerations is the interfacial energy. In order to achieve a better understanding of the interfacial interactions, three different models for estimating the interfacial energy are presented here: (i) fully theoretical, (ii) empirical, and (iii) semi-empirical models. The formation of nanometre-sized gold particles on silicon and silicon oxide substrates is investigated in detail. In addition, the strengths and weaknesses of the three models are elucidated, the different substrates used are compared, and the possibility to further process the obtained particles as nanocatalysts is verified. The importance of a persistent thin communication wetting layer between the particles and its effects on particle size and number is also clarified here. In particular, the intrinsic reduction of the Laplace pressure of the system due to material re-evaporation and Ostwald ripening describes the theoretically predicted and experimentally obtained results. Thus, dewetting phenomena of thin metal layers can be used to manufacture nanostructured devices. From this point of view, the application of gold droplets as catalysts to grow germanium nanowires on different substrates is described. © 2020 Ernst et al.