Search Results

Now showing 1 - 10 of 14
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Single Molecule Magnetism with Strong Magnetic Anisotropy and Enhanced Dy∙∙∙Dy Coupling in Three Isomers of Dy-Oxide Clusterfullerene Dy2O@C82
    (Chichester : John Wiley and Sons Ltd, 2019) Yang, W.; Velkos, G.; Liu, F.; Sudarkova, S.M.; Wang, Y.; Zhuang, J.; Zhang, H.; Li, X.; Zhang, X.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.; Chen, N.
    A new class of single-molecule magnets (SMMs) based on Dy-oxide clusterfullerenes is synthesized. Three isomers of Dy2O@C82 with Cs(6), C3v(8), and C2v(9) cage symmetries are characterized by single-crystal X-ray diffraction, which shows that the endohedral Dy−(µ2-O)−Dy cluster has bent shape with very short Dy−O bonds. Dy2O@C82 isomers show SMM behavior with broad magnetic hysteresis, but the temperature and magnetization relaxation depend strongly on the fullerene cage. The short Dy−O distances and the large negative charge of the oxide ion in Dy2O@C82 result in the very strong magnetic anisotropy of Dy ions. Their magnetic moments are aligned along the Dy−O bonds and are antiferromagnetically (AFM) coupled. At low temperatures, relaxation of magnetization in Dy2O@C82 proceeds via the ferromagnetically (FM)-coupled excited state, giving Arrhenius behavior with the effective barriers equal to the AFM-FM energy difference. The AFM-FM energy differences of 5.4–12.9 cm−1 in Dy2O@C82 are considerably larger than in SMMs with {Dy2O2} bridges, and the Dy∙∙∙Dy exchange coupling in Dy2O@C82 is the strongest among all dinuclear Dy SMMs with diamagnetic bridges. Dy-oxide clusterfullerenes provide a playground for the further tuning of molecular magnetism via variation of the size and shape of the fullerene cage.
  • Item
    Low temperature isolation of a dinuclear silver complex of the cyclotetraphosphane [ClP(μ-PMes*)]2
    (London : Soc., 2015) Bresien, Jonas; Schulz, Axel; Villinger, Alexander
    The reaction of the cyclotetraphosphane [ClP(μ-PMes*)]2 (1, Mes* = 2,4,6-tri-tert-butylphenyl) with Ag[Al(ORF)4] (RF = CH(CF3)2) resulted in a labile, dinuclear silver complex of 1, which eliminates AgCl above −30 °C. Its properties were investigated by spectroscopic methods, single crystal X-ray diffraction and DFT calculations.
  • Item
    Growth of LiCoO2 Single Crystals by the TSFZ Method
    (Washington, DC : ACS Publ., 2018) Nakamura, Shigenobu; Maljuk, Andrey; Maruyama, Yuki; Nagao, Masanori; Watauchi, Satoshi; Hayashi, Takeshi; Anzai, Yutaka; Furukawa, Yasunori; Ling, Chris D.; Deng, Guochu; Avdeev, Maxim; Büchner, Bernd; Tanaka, Isao
    We have grown LiCoO2 single crystals by the traveling solvent floating zone (TSFZ) growth with Li-rich solvent, having observed the incongruent melting behavior of LiCoO2 between 1100 and 1300 °C. The optimum growth conditions in terms of atmosphere and solvent composition were determined to be Ar flow and an atomic ratio Li/Co 85:15, respectively. The crystals grown using a conventional-mirror-type furnace contained periodic inclusions of a Co-O phase due to the influence of Co-O phase segregation on the stability of the molten zone during growth. By using a tilted-mirror FZ furnace, inclusion-free LiCoO2 crystals of about 5 mm in diameter and 70 mm long were obtained at a tilting angle Î = 10°. The grown crystals were confirmed to be single-domain by neutron Laue diffraction. © 2018 American Chemical Society.
  • Item
    Ferroelectric Self-Poling in GeTe Films and Crystals
    (Basel : MDPI, 2019) Kriegner, Dominik; Springholz, Gunther; Richter, Carsten; Pilet, Nicolas; Müller, Elisabeth; Capron, Marie; Berger, Helmut; Holý, Václav; Dil, J. Hugo; Krempaský, Juraj
    Ferroelectric materials are used in actuators or sensors because of their non-volatile macroscopic electric polarization. GeTe is the simplest known diatomic ferroelectric endowed with exceedingly complex physics related to its crystalline, amorphous, thermoelectric, and—fairly recently discovered—topological properties, making the material potentially interesting for spintronics applications. Typically, ferroelectric materials possess random oriented domains that need poling to achieve macroscopic polarization. By using X-ray absorption fine structure spectroscopy complemented with anomalous diffraction and piezo-response force microscopy, we investigated the bulk ferroelectric structure of GeTe crystals and thin films. Both feature multi-domain structures in the form of oblique domains for films and domain colonies inside crystals. Despite these multi-domain structures which are expected to randomize the polarization direction, our experimental results show that at room temperature there is a preferential ferroelectric order remarkably consistent with theoretical predictions from ideal GeTe crystals. This robust self-poled state has high piezoelectricity and additional poling reveals persistent memory effects. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Wave-shaped polycyclic hydrocarbons with controlled aromaticity
    (Cambridge : RSC, 2019) Ma, Ji; Zhang, Ke; Schellhammer, Karl Sebastian; Fu, Yubin; Komber, Hartmut; Xu, Chi; Popov, Alexey A.; Hennersdorf, Felix; Weigand, Jan J.; Zhou, Shengqiang; Pisula, Wojciech; Ortmann, Frank; Berger, Reinhard; Liu, Junzhi; Feng, Xinliang
    Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y0 = 0.23; y1 = 0.22; t1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters. © The Royal Society of Chemistry.
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Experimental electronic structure of In2O3 and Ga2O3
    (Bristol : IOP, 2011) Janowitz, C.; Scherer, V.; Mohamed, M.; Krapf, A.; Dwelk, H.; Manzke, R.; Galazka, Z.; Uecker, R.; Irmscher, K.; Fornari, R.; Michling, M.; Schmeißer, D.; Weber, J.R.; Varley, J.B.; Van De Walle, C.G.
    Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.
  • Item
    Mixed dysprosium-lanthanide nitride clusterfullerenes DyM2N@C80-: I h and Dy2MN@C80- i h (M = Gd, Er, Tm, and Lu): Synthesis, molecular structure, and quantum motion of the endohedral nitrogen atom
    (Cambridge : RSC Publ., 2019) Schlesier, C.; Liu, F.; Dubrovin, V.; Spree, L.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.
    Systematic exploration of the synthesis of mixed-metal Dy-M nitride clusterfullerenes (NCFs, M = Gd, Er, Tm, Lu) is performed, and the impact of the second metal on the relative yield is evaluated. We demonstrate that the ionic radius of the metal appears to be the main factor allowing explanation of the relative yields in Dy-M mixed-metal systems with M = Sc, Lu, Er, and Gd. At the same time, Dy-Tm NCFs show anomalously low yields, which is not consistent with the relatively small ionic radius of Tm3+ but can be explained by the high third ionization potential of Tm. Complete separation of Dy-Gd and Dy-Er, as well as partial separation of Dy-Lu M3N@C80 nitride clusterfullerenes, is accomplished by recycling HPLC. The molecular structures of DyGd2N@C80 and DyEr2N@C80 are analyzed by means of single-crystal X-ray diffraction. A remarkable ordering of mixed-metal nitride clusters is found despite similar size and electronic properties of the metals. Possible pyramidalization of the nitride clusters in these and other nitride clusterfullerenes is critically analyzed with the help of DFT calculations and reconstruction of the nitrogen inversion barrier in M3N@C80 molecules is performed. Although a double-well potential with a pyramidal cluster structure is found to be common for most of them, the small size of the inversion barrier often leads to an apparent planar structure of the cluster. This situation is found for those M3N@C80 molecules in which the energy of the lowest vibrational level exceeds that of the inversion barrier, including Dy3N@C80 and DyEr2N@C80. The genuine pyramidal structure can be observed by X-ray diffraction only when the lowest vibrational level is below the inversion barrier, such as those found in Gd3N@C80 and DyGd2N@C80. The quantum nature of molecular vibrations becomes especially apparent when the size of the inversion barrier is comparable to the energy of the lowest vibrational levels.
  • Item
    Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films
    (Bristol : Institute of Physics Publishing, 2018) Yuan, F.; Grinenko, V.; Iida, K.; Richter, S.; Pukenas, A.; Skrotzki, W.; Sakoda, M.; Naito, M.; Sala, A.; Putti, M.; Yamashita, A.; Takano, Y.; Shi, Z.; Nielsch, K.; Hühne, R.
    Revealing the universal behaviors of iron-based superconductors (FBS) is important to elucidate the microscopic theory of superconductivity. In this work, we investigate the effect of in-plane strain on the slope of the upper critical field H c2 at the superconducting transition temperature T c (i.e. -dH c2/dT) for FeSe0.7Te0.3 thin films. The in-plane strain tunes T c in a broad range, while the composition and disorder are almost unchanged. We show that -dH c2/dT scales linearly with T c, indicating that FeSe0.7Te0.3 follows the same universal behavior as observed for pnictide FBS. The observed behavior is consistent with a multiband superconductivity paired by interband interaction such as sign change s ± superconductivity.