Search Results

Now showing 1 - 10 of 4644
  • Item
    An asymptotic analysis for a generalized Cahn--Hilliard system with fractional operators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In a recent paper the same authors have proved existence, uniqueness and regularity results for a class of viscous and nonviscous Cahn--Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers in the spectral sense of general linear operators, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space of square-integrable functions on a bounded and smooth three-dimensional domain, and have compact resolvents. Here, for the case of the viscous system, we analyze the asymptotic behavior of the solution as the fractional power coefficient of the second operator tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of the second operator appears.
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    Synthesis and crystal structure of a one-dimensional chain-like strontium(II) coordination polymer built of N-methyldiethanolamine and isobutyrate ligands
    (Chester : International Union of Crystallography, 2021) Seiss, Maximilian; Schmitz, Sebastian; Börner, Martin; Monakhov, Kirill Yu.
    The one-dimensional coordination polymer (I) [Sr(ib)2 (H2mda)]n (Hib = isobutyric acid, C4H8O2, and H2mda = N-methyldiethanolamine, C5H13NO2), namely, catena-poly[[(N-methyldiethanolamine-k3O, N, O')strontium(II)]-di-μ2- isobutyrato-K3O, O':O;K3O:O, O'], was prepared by the one-pot aerobic reaction of [Zr6O4 (OH)4 (ib)12 (H2O)].3Hib with Sr(NO3)2 and H2mda in the presence of MnCl2 and Et3N in acetonitrile. The use of MnCl2 is key to the isolation of I as high-quality colorless crystals in good yield. The molecular solid-state structure of I was determined by single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c and shows a one-dimensional polymeric chain structure. Each monomeric unit of this coordination polymer consists of a central SrII ion in the NO8 coordination environment of two deprotonated ib- ligands and one fully protonated H2mda ligand. The C and O atoms of the H2mda ligand were refined as disordered over two sets of sites with site occupancies of 0.619 (3) and 0.381 (3). Compound I shows thermal stability up to 130°C in air. © 2021 International Union of Crystallography. All rights reserved.
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate
    (Chester : International Union of Crystallography, 2015) Schirmer, Marie-Luis; Spannenberg, Anke; Werner, Thomas
    The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.
  • Item
    Single-crystal neutron and X-ray diffraction study of garnet-type solid-state electrolyte Li6La3ZrTaO12: An in situ temperature-dependence investigation (2.5 ≤ T ≤ 873 K)
    (Oxford [u.a.] : Wiley-Blackwell, 2021) Redhammer, Günther J.; Meven, Martin; Ganschow, Steffen; Tippelt, Gerold; Rettenwander, Daniel
    Large single crystals of garnet-type Li6La3ZrTaO12 (LLZTO) were grown by the Czochralski method and analysed using neutron diffraction between 2.5 and 873 K in order to fully characterize the Li atom distribution, and possible Li ion mobility in this class of potential candidates for solid-state electrolyte battery material. LLZTO retains its cubic symmetry (space group Ia 3 d) over the complete temperature range. When compared to other sites, the octahedral sites behave as the most rigid unit and show the smallest increase in atomic displacement parameters and bond length. The La and Li sites show similar thermal expansion in their bond lengths with temperature, and the anisotropic and equivalent atomic displacement parameters exhibit a distinctly larger increase at temperatures above 400 K. Detailed inspection of nuclear densities at the Li1 site reveal a small but significant displacement from the 24d position to the typical 96h position, which cannot, however, be resolved from the single-crystal X-ray diffraction data. The site occupation of LiI ions on Li1 and Li2 sites remains constant, so there is no change in site occupation with temperature. © 2021 International Union of Crystallography. All rights reserved.
  • Item
    Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDFTFE), UHMWPE, and rGO
    (Washington, DC : ACS Publications, 2020) Shiyanova, Kseniya A.; Gudkov, Maksim V.; Gorenberg, Arkady Ya; Rabchinskii, Maxim K.; Smirnov, Dmitry A.; Shapetina, Maria A.; Gurinovich, Tatiana D.; Goncharuk, Galina P.; Kirilenko, Demid A.; Bazhenov, Sergey L.; Melnikov, Valery P.
    The formation of a segregated network structure (wittingly uneven distribution of a filler) is one of the most promising strategies for the fabrication of electrically conductive polymer composites at present. However, the simultaneous achievement of high values of electrical conductivity with the retention of well mechanical properties within this approach remains a great challenge. Here, by means of X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra, scanning electron microscopy (SEM), dielectric spectroscopy, and compression engineering stress-strain curve analysis, we have studied the effect of a segregated network structure on the electrical conductivity and mechanical properties of a set of polymer composites. The composites were prepared by applying graphene oxide (GO) with ultralarge basal plane size (up to 150 μm) onto the surface of polymer powder particles, namely, poly(vinyl chloride) (PVC), poly(vinylidene fluoride-co-tetrafluoroethylene) (P(VDF-TFE)), and ultrahigh-molecular-weight poly(ethylene) (UHMWPE) with the subsequent GO reduction and composite hot pressing. A strong dependence of the segregated network polymer composites' physical properties on the polymer matrix was demonstrated. Particularly, 12 orders of magnitude rise of the polymers' electrical conductivity up to 0.7 S/m was found upon the incorporation of the reduced GO (rGO). A 17% increase in the P(VDF-TFE) elastic modulus filled by 1 wt % of rGO was observed. Fracture strength of PVC/rGO at 0.5 wt % content of the filler was demonstrated to decrease by fourfold. At the same time, the change in strength was not significant for P(VDF-TFE) and UHMWPE composites in comparison with pure polymers. Our results show a promise to accelerate the development of new composites for energy applications, such as metal-free supercapacitor plates and current collectors of lithium-ion batteries, bipolar plates of proton-exchange membrane fuel cells, antistatic elements of various electronic devices, etc. © 2020 American Chemical Society.
  • Item
    Blind Super-Resolution Approach for Exploiting Illumination Variety in Optical-Lattice Illumination Microscopy
    (Washington, DC : ACS Publications, 2021) Samanta, Krishnendu; Sarkar, Swagato; Acuña, Sebastian; Joseph, Joby; Ahluwalia, Balpreet Singh; Agarwal, Krishna
    Optical-lattice illumination patterns help in pushing high spatial frequency components of the sample into the optical transfer function of a collection microscope. However, exploiting these high-frequency components require precise knowledge of illumination if reconstruction approaches similar to structured illumination microscopy are employed. Here, we present an alternate blind reconstruction approach that can provide super-resolution without the requirement of extra frames. For this, the property of exploiting temporal fluctuations in the sample emissions using “multiple signal classification algorithm” is extended aptly toward using spatial fluctuation of phase-modulated lattice illuminations for super-resolution. The super-resolution ability is shown for sinusoidal and multiperiodic lattice with approximately 3- and 6-fold resolution enhancements, respectively, over the diffraction limit. © 2021 The Authors. Published by American Chemical Society
  • Item
    Dehydroabietylamine-Based Cellulose Nanofibril Films: A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects
    (Washington, DC : ACS Publications, 2019) Hassan, Ghada; Forsman, Nina; Wan, Xing; Keurulainen, Leena; Bimbo, Luis M.; Johansson, Leena-Sisko; Sipari, Nina; Yli-Kauhaluoma, Jari; Zimmermann, Ralf; Stehl, Susanne; Werner, Carsten; Saris, Per E.J.; Österberg, Monika; Moreira, Vânia M.
    The design of antimicrobial surfaces as integral parts of advanced biomaterials is nowadays a high research priority, as the accumulation of microorganisms on surfaces inflicts substantial costs on the health and industry sectors. At present, there is a growing interest in designing functional materials from polymers abundant in nature, such as cellulose, that combine sustainability with outstanding mechanical properties and economic production. There is also the need to find suitable replacements for antimicrobial silver-based agents due to environmental toxicity and spread of resistance to metal antimicrobials. Herein we report the unprecedented decoration of cellulose nanofibril (CNF) films with dehydroabietylamine 1 (CNF-CMC-1), to give an innovative contact-active surface active against Gram-positive and Gram-negative bacteria including the methicillin-resistant S. aureus MRSA14TK301, with low potential to spread resistance and good biocompatibility, all achieved with low surface coverage. CNF-CMC-1 was particularly effective against S. aureus ATCC12528, causing virtually complete reduction of the total cells from 10 5 colony forming units (CFU)/mL bacterial suspensions, after 24 h of contact. This gentle chemical modification of the surface of CNF fully retained the beneficial properties of the original film, including moisture buffering and strength, relevant in many potential applications. Our originally designed surface represents a new class of ecofriendly biomaterials that optimizes the performance of CNF by adding antimicrobial properties without the need for environmentally toxic silver. © Copyright 2019 American Chemical Society.
  • Item
    Structure-property relationships in nanoporous metallic glasses
    (Amsterdam [u.a.] : Elsevier Science, 2016) Şopu, D.; Soyarslan, C.; Sarac, B.; Bargmann, S.; Stoica, M.; Eckert, J.
    We investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64 Zr36 glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.