Search Results

Now showing 1 - 10 of 100
  • Item
    Long-time resistivity monitoring of a freshwater/saltwater transition zone using the vertical electrode system SAMOS
    (Les Ulis : EDP Sciences, 2018) Grinat, Michael; Epping, Dieter; Meyer, Robert; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In September 2009 two newly developed vertical electrode systems were installed in boreholes in the water catchment areas Waterdelle and Ostland at the North Sea island Borkum to monitor possible changes of the transition zone between the freshwater lens and the underlying saltwater. The vertical electrode systems, which were both installed between 44 m and 65 m below ground level, are used for geoelectrical multi-electrode measurements carried out automatically several times per day; the measurements are still ongoing. The whole system consisting of a vertical electrode system in a borehole and the measuring unit at ground level is called SAMOS (Saltwater Monitoring System). At both locations the data show a clear resistivity decrease that indicates the transition zone between freshwater and saltwater. The depth of the transition zone as well as the kind of resistivity decrease is very stable since 2010. Temporal changes are visible if single depths are considered. In 2015 Miriam Ibenthal used a vertical 2D density-dependent groundwater flow model to explain the long-term resistivity measurements and showed that the temporal changes at CLIWAT 2 (Ostland) could be explained by variations of the groundwater level, changing groundwater recharge rates and changing pumping rates of the nearby located drinking water supply wells.
  • Item
    Saltwater intrusion under climate change in North-Western Germany - mapping, modelling and management approaches in the projects TOPSOIL and go-CAM
    (Les Ulis : EDP Sciences, 2018) Wiederhold, Helga; Scheer, Wolfgang; Kirsch, Reinhard; Azizur Rahman, M.; Ronczka, Mathias; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    Climate change will result in rising sea level and, at least for the North Sea region, in rising groundwater table. This leads to a new balance at the fresh–saline groundwater boundary and a new distribution of saltwater intrusions with strong regional differentiations. These effects are investigated in several research projects funded by the European Union and the German Federal Ministry of Education and Research (BMBF). Objectives and some results from the projects TOPSOIL and go-CAM are presented in this poster.
  • Item
    Las Pailas geothermal field - Central America case study: Deciphering a volcanic geothermal play type through the combination of optimized geophysical exploration methods and classic geological conceptual models of volcano-tectonic systems
    (London [u.a.] : Institute of Physics, 2019) Salguero, Leonardo Solís; Rioseco, Ernesto Meneses
    Sustainable exploitation strategies of high-enthalpy geothermal reservoirs in a volcanic geothermal play type require an accurate understanding of key geological structures such as faults, cap rock and caldera boundaries. Of same importance is the recognition of possible magmatic body intrusions and their morphology, whether they are tabular like dikes, layered like sills or domes. The relative value of those magmatic bodies, their age, shape and location rely on the role they play as possible local heat sources, hydraulic barriers between reservoir compartments, and their far-reaching effect on the geochemistry and dynamics of fluids. Obtaining detailed knowledge and a more complete understanding at the early stages of exploration through integrated geological, geophysical and geochemical methods is essential to determine promising geothermal drilling targets for optimized production/re-injection schemes and for the development of adequate exploitation programs. Valuable, extensive geophysical data gathered at Las Pailas high-enthalpy geothermal field at northwestern Costa Rica combined with detailed understanding of the geological structures in the underground may represent a sound basis for an in-depth geoscientific discussion on this topic. Currently, the German cooperation for the identification of geothermal resources in Central America, implemented by the Federal Institute for Geosciences and Natural Resources (BGR), supports an international and interdisciplinary effort, driven by the Instituto Costarricense de Electricidad (ICE) with different international and national research institutions, including the Leibniz Institute for Applied Geophysics (LIAG). The discussions and joint studies refer to the optimized utilization of geophysical and geological methods for geothermal exploration in the Central American region, using the example of Las Pailas Geothermal Field. The results should contribute to a better understanding of the most appropriate geothermal exploration concepts for complex volcanic field settings in Central America.
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.
  • Item
    Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland
    (Katlenburg-Lindau : Copernicus, 2017-5-30) Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo
    The Zackenberg River delta is located in northeast Greenland (74°30′ N, 20°30′ E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.
  • Item
    X-ray computed tomography investigation of structures in Opalinus Clay fromlarge-scale to small-scale after mechanical testing
    (Göttingen : Copernicus Publ., 2016) Kaufhold, Annette; Halisch, Matthias; Zacher, Gerhard; Kaufhold, Stephan
    In the past years X-ray computed tomography (CT) has became more and more common for geoscientific applications and is used from the µm-scale (e.g. for investigations of microfossils or pore-scale structures) up to the dm-scale (full drill cores or soil columns). In this paper we present results from CT imaging and mineralogical investigations of an Opalinus Clay core on different scales and different regions of interest, emphasizing especially the 3-D evaluation and distribution of cracks and their impact on mechanical testing of such material. Enhanced knowledge of the testing behaviour of the Opalinus Clay is of great interest, especially since this material is considered for a long-term radioactive waste disposal and storage facility in Switzerland. Hence, results are compared regarding the mineral (i.e. phase) contrast resolution, the spatial resolution, and the overall scanning speed. With this extensive interdisciplinary scale-down approach it has been possible to characterize the general fracture propagation in comparison to mineralogical and textural features of the Opalinus Clay. Additionally, and as far as we know, a so-called mylonitic zone, located at an intersect of two main fractures, has been observed for the first time for an experimentally deformed Opalinus sample. The multi-scale results are in good accordance to data from naturally deformed Opalinus Clay samples, which enables us to perform systematical research under controlled laboratory conditions. Accompanying 3-D imaging greatly enhances the capability of data interpretation and assessment of such a material.
  • Item
    A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir
    (Göttingen : Copernicus Publ., 2019) Bauer, Johanna F.; Krumbholz, Michael; Luijendijk, Elco; Tanner, David C.
    Geothermal energy is an important and sustainable resource that has more potential than is currently utilized. Whether or not a deep geothermal resource can be exploited, mostly depends on, besides temperature, the utilizable reservoir volume over time, which in turn largely depends on petrophysical parameters. We show, using over 1000 (n=1027) 4-D finite-element models of a simple geothermal doublet, that the lifetime of a reservoir is a complex function of its geological parameters, their heterogeneity, and the background hydraulic gradient (BHG). In our models, we test the effects of porosity, permeability, and BHG in an isotropic medium. Furthermore, we simulate the effect of permeability contrast and anisotropy induced by layering, fractures, and a fault. We quantify the lifetime of the reservoir by measuring the time to thermal breakthrough, i.e. how many years pass before the temperature of the produced fluid falls below the 100 ∘C threshold. The results of our sensitivity study attest to the positive effect of high porosity; however, high permeability and BHG can combine to outperform the former. Particular configurations of all the parameters can cause either early thermal breakthrough or extreme longevity of the reservoir. For example, the presence of high-permeability fractures, e.g. in a fault damage zone, can provide initially high yields, but it channels fluid flow and therefore dramatically restricts the exploitable reservoir volume. We demonstrate that the magnitude and orientation of the BHG, provided permeability is sufficiently high, are the prime parameters that affect the lifetime of a reservoir. Our numerical experiments show also that BHGs (low and high) can be outperformed by comparatively small variations in permeability contrast (103) and fracture-induced permeability anisotropy (101) that thus strongly affect the performance of geothermal reservoirs.
  • Item
    Distinct element geomechanical modelling of the formation of sinkhole clusters within large-scale karstic depressions
    (Göttingen : Copernicus Publ., 2019) Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Watson, Robert A.; Polom, Ulrich; Schöpfer, Martin P. J.; Emam, Sacha; Dahm, Torsten
    The 2-D distinct element method (DEM) code (PFC2D_V5) is used here to simulate the evolution of subsidence-related karst landforms, such as single and clustered sinkholes, and associated larger-scale depressions. Subsurface material in the DEM model is removed progressively to produce an array of cavities; this simulates a network of subsurface groundwater conduits growing by chemical/mechanical erosion. The growth of the cavity array is coupled mechanically to the gravitationally loaded surroundings, such that cavities can grow also in part by material failure at their margins, which in the limit can produce individual collapse sinkholes. Two end-member growth scenarios of the cavity array and their impact on surface subsidence were examined in the models: (1) cavity growth at the same depth level and growth rate; (2) cavity growth at progressively deepening levels with varying growth rates. These growth scenarios are characterised by differing stress patterns across the cavity array and its overburden, which are in turn an important factor for the formation of sinkholes and uvala-like depressions. For growth scenario (1), a stable compression arch is established around the entire cavity array, hindering sinkhole collapse into individual cavities and favouring block-wise, relatively even subsidence across the whole cavity array. In contrast, for growth scenario (2), the stress system is more heterogeneous, such that local stress concentrations exist around individual cavities, leading to stress interactions and local wall/overburden fractures. Consequently, sinkhole collapses occur in individual cavities, which results in uneven, differential subsidence within a larger-scale depression. Depending on material properties of the cavity-hosting material and the overburden, the larger-scale depression forms either by sinkhole coalescence or by widespread subsidence linked geometrically to the entire cavity array. The results from models with growth scenario (2) are in close agreement with surface morphological and subsurface geophysical observations from an evaporite karst area on the eastern shore of the Dead Sea.
  • Item
    Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures
    (Göttingen : Copernicus Publ., 2019) Nickschick, Tobias; Flechsig, Christina; Mrlina, Jan; Oppermann, Frank; Löbig, Felix; Günther, Thomas
    The Cheb Basin, a region of ongoing swarm earthquake activity in the western Czech Republic, is characterized by intense carbon dioxide degassing along two known fault zones – the N–S-striking Počatky–Plesná fault zone (PPZ) and the NW–SE-striking Mariánské Lázně fault zone (MLF). The fluid pathways for the ascending CO2 of mantle origin are one of the subjects of the International Continental Scientific Drilling Program (ICDP) project “Drilling the Eger Rift” in which several geophysical surveys are currently being carried out in this area to image the topmost hundreds of meters to assess the structural situation, as existing boreholes are not sufficiently deep to characterize it. As electrical resistivity is a sensitive parameter to the presence of conductive rock fractions as liquid fluids, clay minerals, and also metallic components, a large-scale dipole–dipole experiment using a special type of electric resistivity tomography (ERT) was carried out in June 2017 in order to image fluid-relevant structures. We used permanently placed data loggers for voltage measurements in conjunction with moving high-power current sources to generate sufficiently strong signals that could be detected all along the 6.5 km long profile with 100 and 150 m dipole spacings. After extensive processing of time series for voltage and current using a selective stacking approach, the pseudo-section is inverted, which results in a resistivity model that allows for reliable interpretations depths of up than 1000 m. The subsurface resistivity image reveals the deposition and transition of the overlying Neogene Vildštejn and Cypris formations, but it also shows a very conductive basement of phyllites and granites that can be attributed to high salinity or rock alteration by these fluids in the tectonically stressed basement. Distinct, narrow pathways for CO2 ascent are not observed with this kind of setup, which hints at wide degassing structures over several kilometers within the crust instead. We also observed gravity and GPS data along this profile in order to constrain ERT results. A gravity anomaly of ca. −9 mGal marks the deepest part of the Cheb Basin where the ERT profile indicates a large accumulation of conductive rocks, indicating a very deep weathering or alteration of the phyllitic basement due to the ascent of magmatic fluids such as CO2. We propose a conceptual model in which certain lithologic layers act as caps for the ascending fluids based on stratigraphic records and our results from this experiment, providing a basis for future drillings in the area aimed at studying and monitoring fluids.
  • Item
    Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten
    (Stuttgart : Schweizerbart, 2018) Mraz, Elena; Moeck, Inga; Bissmann, Silke; Hild, Stephan
    Mraz, E., Moeck, I., Bissmann, S. & Hild, S. (2018): Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. – Z. Dt. Ges. Geowiss., 169: 389–411, Stuttgart. The Bavarian Molasse Basin represents a peripheral foreland basin hosting abundant hydrothermal resources in 3–5 km deep Upper Jurassic carbonate rocks. Faults and facies play a major role in targeting production wells; however the kinematic evolution of fault zones and the classification of carbonate facies of the Upper Jurassic are still debated. At the geothermal prospect Mauerstetten in the Western Bavarian Molasse Basin, a geothermal well and a side track are drilled along and about 650 m off an ENE–WSW striking normal fault. A stratigraphy related fault throw analysis of six 2D seismic sections crossing this fault evidences multiphase normal faulting from Cretaceous to Upper Miocene with a major activity phase in the Oligocene. This fault, inactive since Upper Miocene, is presumably a fossil normal fault in the present-day stress field that has a maximum horizontal stress direction in N–S. Analysis of carbonate facies by thin section petrography of drill cuttings and geophysical borehole logs lead to two major conclusions: (i) the reservoir rock represents low permeable platform limestones, reef detritus and dolostones of the Franconian facies, and (ii) the fault consists of multiple normal faulting steps with higher permeability than in intact rock. This observation suggests a fracture controlled reservoir with permeable damage zones in a tight rock mass along reactivated normal faults.