A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir

Loading...
Thumbnail Image
Date
2019
Volume
10
Issue
6
Journal
Series Titel
Book Title
Publisher
Göttingen : Copernicus Publ.
Abstract

Geothermal energy is an important and sustainable resource that has more potential than is currently utilized. Whether or not a deep geothermal resource can be exploited, mostly depends on, besides temperature, the utilizable reservoir volume over time, which in turn largely depends on petrophysical parameters. We show, using over 1000 (n=1027) 4-D finite-element models of a simple geothermal doublet, that the lifetime of a reservoir is a complex function of its geological parameters, their heterogeneity, and the background hydraulic gradient (BHG). In our models, we test the effects of porosity, permeability, and BHG in an isotropic medium. Furthermore, we simulate the effect of permeability contrast and anisotropy induced by layering, fractures, and a fault. We quantify the lifetime of the reservoir by measuring the time to thermal breakthrough, i.e. how many years pass before the temperature of the produced fluid falls below the 100 ∘C threshold. The results of our sensitivity study attest to the positive effect of high porosity; however, high permeability and BHG can combine to outperform the former. Particular configurations of all the parameters can cause either early thermal breakthrough or extreme longevity of the reservoir. For example, the presence of high-permeability fractures, e.g. in a fault damage zone, can provide initially high yields, but it channels fluid flow and therefore dramatically restricts the exploitable reservoir volume. We demonstrate that the magnitude and orientation of the BHG, provided permeability is sufficiently high, are the prime parameters that affect the lifetime of a reservoir. Our numerical experiments show also that BHGs (low and high) can be outperformed by comparatively small variations in permeability contrast (103) and fracture-induced permeability anisotropy (101) that thus strongly affect the performance of geothermal reservoirs.

Description
Keywords
Anisotropy, Faulting, Flow of fluids, Fracture, Geothermal fields, Low permeability reservoirs, Porosity, Geological parameters, Geological structures, Numerical experiments, Numerical sensitivity, Permeability anisotropy, Permeability contrasts, Petrophysical parameters, Sustainable resources, Petroleum reservoir engineering, anisotropy, fluid flow, geological structure, geothermal energy, hydraulics, numerical method, permeability, porosity
Citation
Bauer, J. F., Krumbholz, M., Luijendijk, E., & Tanner, D. C. (2019). A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir. 10(6). https://doi.org//10.5194/se-10-2115-2019
License
CC BY 4.0 Unported