A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir

dc.bibliographicCitation.firstPage2115eng
dc.bibliographicCitation.issue6eng
dc.bibliographicCitation.journalTitleSolid earth : SEeng
dc.bibliographicCitation.lastPage2135eng
dc.bibliographicCitation.volume10eng
dc.contributor.authorBauer, Johanna F.
dc.contributor.authorKrumbholz, Michael
dc.contributor.authorLuijendijk, Elco
dc.contributor.authorTanner, David C.
dc.date.accessioned2022-04-20T06:02:54Z
dc.date.available2022-04-20T06:02:54Z
dc.date.issued2019
dc.description.abstractGeothermal energy is an important and sustainable resource that has more potential than is currently utilized. Whether or not a deep geothermal resource can be exploited, mostly depends on, besides temperature, the utilizable reservoir volume over time, which in turn largely depends on petrophysical parameters. We show, using over 1000 (n=1027) 4-D finite-element models of a simple geothermal doublet, that the lifetime of a reservoir is a complex function of its geological parameters, their heterogeneity, and the background hydraulic gradient (BHG). In our models, we test the effects of porosity, permeability, and BHG in an isotropic medium. Furthermore, we simulate the effect of permeability contrast and anisotropy induced by layering, fractures, and a fault. We quantify the lifetime of the reservoir by measuring the time to thermal breakthrough, i.e. how many years pass before the temperature of the produced fluid falls below the 100 ∘C threshold. The results of our sensitivity study attest to the positive effect of high porosity; however, high permeability and BHG can combine to outperform the former. Particular configurations of all the parameters can cause either early thermal breakthrough or extreme longevity of the reservoir. For example, the presence of high-permeability fractures, e.g. in a fault damage zone, can provide initially high yields, but it channels fluid flow and therefore dramatically restricts the exploitable reservoir volume. We demonstrate that the magnitude and orientation of the BHG, provided permeability is sufficiently high, are the prime parameters that affect the lifetime of a reservoir. Our numerical experiments show also that BHGs (low and high) can be outperformed by comparatively small variations in permeability contrast (103) and fracture-induced permeability anisotropy (101) that thus strongly affect the performance of geothermal reservoirs.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8731
dc.identifier.urihttps://doi.org/10.34657/7769
dc.language.isoengeng
dc.publisherGöttingen : Copernicus Publ.eng
dc.relation.doihttps://doi.org/10.5194/se-10-2115-2019
dc.relation.essn1869-9529
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc550eng
dc.subject.otherAnisotropyeng
dc.subject.otherFaultingeng
dc.subject.otherFlow of fluidseng
dc.subject.otherFractureeng
dc.subject.otherGeothermal fieldseng
dc.subject.otherLow permeability reservoirseng
dc.subject.otherPorosityeng
dc.subject.otherGeological parameterseng
dc.subject.otherGeological structureseng
dc.subject.otherNumerical experimentseng
dc.subject.otherNumerical sensitivityeng
dc.subject.otherPermeability anisotropyeng
dc.subject.otherPermeability contrastseng
dc.subject.otherPetrophysical parameterseng
dc.subject.otherSustainable resourceseng
dc.subject.otherPetroleum reservoir engineeringeng
dc.subject.otheranisotropyeng
dc.subject.otherfluid floweng
dc.subject.othergeological structureeng
dc.subject.othergeothermal energyeng
dc.subject.otherhydraulicseng
dc.subject.othernumerical methodeng
dc.subject.otherpermeabilityeng
dc.subject.otherporosityeng
dc.titleA numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoireng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorLIAGeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_numerical_sensitivity_study_of_how_permeability.pdf
Size:
7.46 MB
Format:
Adobe Portable Document Format
Description: