Search Results

Now showing 1 - 10 of 277
Loading...
Thumbnail Image
Item

Distribution of Cracks in a Chain of Atoms at Low Temperature

2021, Jansen, Sabine, König, Wolfgang, Schmidt, Bernd, Theil, Florian

We consider a one-dimensional classical many-body system with interaction potential of Lennard–Jones type in the thermodynamic limit at low temperature 1/β∈(0,∞). The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with N particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of Nexp(−βesurf/2) with esurf>0 a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations.

Loading...
Thumbnail Image
Item

On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints

2021, Berthold, Holger, Heitsch, Holger, Henrion, René, Schwientek, Jan

We present an adaptive grid refinement algorithm to solve probabilistic optimization problems with infinitely many random constraints. Using a bilevel approach, we iteratively aggregate inequalities that provide most information not in a geometric but in a probabilistic sense. This conceptual idea, for which a convergence proof is provided, is then adapted to an implementable algorithm. The efficiency of our approach when compared to naive methods based on uniform grid refinement is illustrated for a numerical test example as well as for a water reservoir problem with joint probabilistic filling level constraints.

Loading...
Thumbnail Image
Item

Modelling the Dependency between Inflation and Exchange Rate Using Copula

2020, Kwofie, Charles, Akoto, Isaac, Opoku-Ameyaw, Kwaku

In this paper, we propose a copula approach in measuring the dependency between inflation and exchange rate. In unveiling this dependency, we first estimated the best GARCH model for the two variables. Then, we derived the marginal distributions of the standardised residuals from the GARCH. The Laplace and generalised t distributions best modelled the residuals of the GARCH(1,1) models, respectively, for inflation and exchange rate. These marginals were then used to transform the standardised residuals into uniform random variables on a unit interval [0, 1] for estimating the copulas. Our results show that the dependency between inflation and exchange rate in Ghana is approximately 7%.

Loading...
Thumbnail Image
Item

Uncertainty Quantification in Image Segmentation Using the Ambrosio–Tortorelli Approximation of the Mumford–Shah Energy

2021, Hintermüller, Michael, Stengl, Steven-Marian, Surowiec, Thomas M.

The quantification of uncertainties in image segmentation based on the Mumford–Shah model is studied. The aim is to address the error propagation of noise and other error types in the original image to the restoration result and especially the reconstructed edges (sharp image contrasts). Analytically, we rely on the Ambrosio–Tortorelli approximation and discuss the existence of measurable selections of its solutions as well as sampling-based methods and the limitations of other popular methods. Numerical examples illustrate the theoretical findings.

Loading...
Thumbnail Image
Item

Local Well-Posedness of Strong Solutions to the Three-Dimensional Compressible Primitive Equations

2021, Liu, Xin, Titi, Edriss S.

This work is devoted to establishing the local-in-time well-posedness of strong solutions to the three-dimensional compressible primitive equations of atmospheric dynamics. It is shown that strong solutions exist, are unique, and depend continuously on the initial data, for a short time in two cases: with gravity but without vacuum, and with vacuum but without gravity. © 2021, The Author(s).

Loading...
Thumbnail Image
Item

A rigorous derivation and energetics of a wave equation with fractional damping

2021, Mielke, Alexander, Netz, Roland R., Zendehroud, Sina

We consider a linear system that consists of a linear wave equation on a horizontal hypersurface and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic monolayers at the water–air interface, which is an experimental setup that is relevant for understanding wave propagation in biological membranes. We study the scaling regime where the relevant horizontal length scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally damped wave equation for the membrane. We provide the associated existence results via linear semigroup theory and show convergence of the solutions in the scaling limit. Moreover, based on the energy–dissipation structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally damped wave equation with a time derivative of order 3/2.

Loading...
Thumbnail Image
Item

Poisson approximation and connectivity in a scale-free random connection model

2021, Iyer, Srikanth K., Jhawar, Sanjoy Kr

For abstract see PDF

Loading...
Thumbnail Image
Item

Existence, iteration procedures and directional differentiability for parabolic QVIs

2020, Alphonse, Amal, Hintermüller, Michael, Rautenberg, Carlos N.

We study parabolic quasi-variational inequalities (QVIs) of obstacle type. Under appropriate assumptions on the obstacle mapping, we prove the existence of solutions of such QVIs by two methods: one by time discretisation through elliptic QVIs and the second by iteration through parabolic variational inequalities. Using these results, we show the directional differentiability (in a certain sense) of the solution map which takes the source term of a parabolic QVI into the set of solutions, and we relate this result to the contingent derivative of the aforementioned map. We finish with an example where the obstacle mapping is given by the inverse of a parabolic differential operator.

Loading...
Thumbnail Image
Item

Well-posedness analysis of multicomponent incompressible flow models

2021, Bothe, Dieter, Druet, Pierre-Etienne

In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the velocity field in the Navier–Stokes equations is not solenoidal and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution.

Loading...
Thumbnail Image
Item

Transport and continuity equations with (very) rough noise

2021, Bellingeri, C., Djurdjevac, A., Friz, P. K., Tapia, N.

Existence and uniqueness for rough flows, transport and continuity equations driven by general geometric rough paths are established.