Search Results

Now showing 1 - 6 of 6
  • Item
    Fabrication of four-level hierarchical topographies through the combination of LIPSS and direct laser interference pattering on near-beta titanium alloy
    (New York, NY [u.a.] : Elsevier, 2022) Schell, Frederic; Alamri, Sabri; Hariharan, Avinash; Gebert, Annett; Lasagni, Andrés Fabián; Kunze, Tim
    Complex repetitive periodic surface patterns were produced on a near-beta Ti-13Nb-13Zr alloy, using two-beam Direct Laser Interference Patterning (DLIP) employing a picosecond-pulsed laser source with wavelengths of 355 nm, 532 nm and 1064 nm. Different types of Laser-induced periodic surface structures (LIPSS) are produced, including low and high spatial frequency LIPSS, which are observed frequently on top of the line-like DLIP microstructures, as well as quasi-periodic microstructures with periods greater than the laser wavelength. The feature size of the fabricated LIPSS features could be tuned as function of the utilized laser process parameters.
  • Item
    Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications
    (Bristol : IOP Publishing, 2020-12-4) Utech, Toni; Pötschke, Petra; Simon, Frank; Janke, Andreas; Kettner, Hannes; Paiva, Maria; Zimmerer, Cordelia
    Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
  • Item
    Modulation Linearity Characterization of Si Ring Modulators
    (Washington, DC : OSA, 2021) Jo, Youngkwan; Mai, Christian; Lischke, Stefan; Zimmermann, Lars; Choi, Woo-Young
    Modulation linearity of Si ring modulators (RMs) is investigated through the numerical simulation based on the coupled-mode theory and experimental verification. Numerical values of the key parameters needed for the simulation are experimentally extracted. Simulation and measurement results agree well. With these, the influence of input optical wavelength and power on the Si RM linearity are characterized.
  • Item
    Tailoring morphology in titania nanotube arrays by implantation: experiments and modelling on designed pore size—and beyond
    (London [u.a.] : Taylor & Francis, 2021) Kupferer, Astrid; Mändl, Stephan; Mayr, Stefan G.
    Titania nanotube arrays are an exceptionally adaptable material for various applications ranging from energy conversion to biomedicine. Besides electronic properties, structural morphology on nanometre scale is essential. It is demonstrated that ion implantation constitutes a versatile method for the synthesis of tailored nanotube morphologies. Experimental-phenomenological observations reveal a successive closing behaviour of nanotubes upon ion implantation. Employing molecular dynamics calculations in combination with analytical continuum models, the physical origins of this scenario are unravelled by identifying ion bombardment induced viscous flow driven by capillarity as its underlying mechanism besides minor contributions from sputtering and redeposition. These findings enable the tailoring of nanotube arrays suitable for manifold applications.
  • Item
    Micro Fresnel mirror array with individual mirror control
    (Bristol : IOP Publ., 2020) Poyyathuruthy Bruno, Binal; Schütze, Robert; Grunwald, Ruediger; Wallrabe, Ulrike
    We present the design and fabrication of a miniaturized array of piezoelectrically actuated high speed Fresnel mirrors with individual mirror control. These Fresnel mirrors can be used to generate propagation invariant and self-healing interference patterns. The mirrors are actuated using piezobimorph actuators, and the consequent change of the tilting angle of the mirrors changes the fringe spacing of the interference pattern generated. The array consists of four Fresnel mirrors each having an area of 2 × 2 mm2 arranged in a 2x2 configuration. The device, optimized using FEM simulations, is able to achieve maximum mirror deflections of 15 mrad, and has a resonance frequency of 28 kHz.
  • Item
    Field-induced interactions in magneto-active elastomers - a comparison of experiments and simulations
    (Bristol : IOP Publ., 2020) Metsch, P.; Schmidt, H.; Sindersberger, D.; Kalina, K.A.; Brummund, J.; Auernhammer, G.K.; Monkman, G.J.; Kästner, M.
    In this contribution, field-induced interactions of magnetizable particles embedded into a soft elastomer matrix are analyzed with regard to the resulting mechanical deformations. By comparing experiments for two-, three- and four-particle systems with the results of finite element simulations, a fully coupled continuum model for magneto-active elastomers is validated with the help of real data for the first time. The model under consideration permits the investigation of magneto-active elastomers with arbitrary particle distances, shapes and volume fractions as well as magnetic and mechanical properties of the individual constituents. It thus represents a basis for future studies on more complex, realistic systems. Our results show a very good agreement between experiments and numerical simulations—the deformation behavior of all systems is captured by the model qualitatively as well as quantitatively. Within a sensitivity analysis, the influence of the initial particle positions on the systems' response is examined. Furthermore, a comparison of the full three-dimensional model with the often used, simplified two-dimensional approach shows the typical overestimation of resulting interactions in magneto-active elastomers.