Search Results

Now showing 1 - 3 of 3
  • Item
    Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy
    (Basel : MDPI, 2021) Pistiki, Aikaterini; Ramoji, Anuradha; Ryabchykov, Oleg; Thomas-Rueddel, Daniel; Press, Adrian T.; Makarewicz, Oliwia; Giamarellos-Bourboulis, Evangelos J.; Bauer, Michael; Bocklitz, Thomas; Popp, Juergen; Neugebauer, Ute
    Biochemical information from activated leukocytes provide valuable diagnostic information. In this study, Raman spectroscopy was applied as a label-free analytical technique to characterize the activation pattern of leukocyte subpopulations in an in vitro infection model. Neutrophils, monocytes, and lymphocytes were isolated from healthy volunteers and stimulated with heat-inactivated clinical isolates of Candida albicans, Staphylococcus aureus, and Klebsiella pneumoniae. Binary classification models could identify the presence of infection for monocytes and lymphocytes, classify the type of infection as bacterial or fungal for neutrophils, monocytes, and lymphocytes and distinguish the cause of infection as Gram-negative or Gram-positive bacteria in the monocyte subpopulation. Changes in single-cell Raman spectra, upon leukocyte stimulation, can be explained with biochemical changes due to the leukocyte’s specific reaction to each type of pathogen. Raman spectra of leukocytes from the in vitro infection model were compared with spectra from leukocytes of patients with infection (DRKS-ID: DRKS00006265) with the same pathogen groups, and a good agreement was revealed. Our study elucidates the potential of Raman spectroscopy-based single-cell analysis for the differentiation of circulating leukocyte subtypes and identification of the infection by probing the molecular phenotype of those cells.
  • Item
    Time Optimization of Seed-Mediated Gold Nanotriangle Synthesis Based on Kinetic Studies
    (Basel : MDPI, 2021) Podlesnaia, Ekaterina; Csáki, Andrea; Fritzsche, Wolfgang
    The synthesis of shape-anisotropic plasmonic nanoparticles such as gold nanotriangles is of increasing interest. These particles have a high potential for applications due to their notable optical properties. A key challenge of the synthesis is usually the low reproducibility. Even the optimized seed-based methods often lack in the synthesis yield or are labor- and time-consuming. In this work, a seed-mediated synthesis with high reproducibility is replicated in order to determine the necessary reaction time for each step. Online monitoring of the reaction mixtures by UV–VIS spectroscopy is used as a powerful tool to track the evolution of the synthesis. The kinetics of the individual stages is elucidated by real-time investigations. As a consequence, the complete synthesis could be optimized and can now be realized in a single day instead of three without any loss in the resulting sample quality.
  • Item
    Modification of Surface Bond Au Nanospheres by Chemically and Plasmonically Induced Pd Deposition
    (Basel : MDPI, 2021) Stolle, Heike Lisa Kerstin Stephanie; Csáki, Andrea; Dellith, Jan; Fritzsche, Wolfgang
    In this work we investigated methods of modifying gold nanospheres bound to a silicon surface by depositing palladium onto the surfaces of single nanoparticles. Bimetallic Au-Pd nanoparticles can thus be gained for use in catalysis or sensor technology. For Pd deposition, two methods were chosen. The first method was the reduction of palladium acetate by ascorbic acid, in which the amounts of palladium acetate and ascorbic acid were varied. In the second method we utilized light-induced metal deposition by making use of the plasmonic effect. Through this method, the surface bond nanoparticles were irradiated with light of wavelengths capable of inducing plasmon resonance. The generation of hot electrons on the particle surface then reduced the palladium acetate in the vicinity of the gold nanoparticle, resulting in palladium-covered gold nanospheres. In our studies we demonstrated the effect of both enhancement methods by monitoring the particle heights over enhancement time by atomic force microscopy (AFM), and investigated the influence of ascorbic acid/Pd acetate concentration as well as the impact of the irradiated wavelengths on the enhancement effect. It could thus be proven that both methods were valid for obtaining a deposition of Pd on the surface of the gold nanoparticles. Deposition of Pd on the gold particles using the light-assisted method could be observed, indicating the impact of the plasmonic effect and hot electron for Pd acetate reduction on the gold particle surface. In the case of the reduction method with ascorbic acid, in addition to Pd deposition on the gold nanoparticle surface, larger pure Pd particles and extended clusters were also generated. The reduction with ascorbic acid however led to a considerably thicker Pd layer of up to 54 nm in comparison to up to 11 nm for the light-induced metal deposition with light resonant to the particle absorption wavelength. Likewise, it could be demonstrated that light of non-resonant wavelengths was not capable of initiating Pd deposition, since a growth of only 1.6 nm (maximum) was observed for the Pd layer.