Search Results

Now showing 1 - 10 of 33
  • Item
    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study
    (Amsterdam : Elsevier, 2021) Zhao, Qi; Guo, Yuming; Ye, Tingting; Gasparrini, Antonio; Tong, Shilu; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Armstrong, Ben; Forsberg, Bertil; Pan, Shih-Chun; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Dung, Do Van; Royé, Dominic; Indermitte, Ene; Lavigne, Eric; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Di Ruscio, Francesco; Sera, Francesco; Carrasco-Escobar, Gabriel; Kan, Haidong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J. K.; Katsouyanni, Klea; Hurtado Diaz, Magali; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; de Sousa Zanotti Stagliorio Coélho, Micheline; Valdés Ortega, Nicolás; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Matus Correa, Patricia; Goodman, Patrick; Nascimento Saldiva, Paulo Hilario; Abrutzky, Rosana; Osorio, Samuel; Rao, Shilpa; Fratianni, Simona; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Guo, Yue Leon; Bell, Michelle L.; Li, Shanshan
    Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. Funding: Australian Research Council and the Australian National Health and Medical Research Council. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent
    (Springfield, MO : AIMS Press, 2021) Khalil, Tayyaba; Asad, Saeed A.; Khubaib, Nusaiba; Baig, Ayesha; Atif, Salman; Umar, Muhammad; Kropp, Jürgen P.; Pradhan, Prajal; Baig, Sofia
    The impacts of climate change are projected to become more intense and frequent. One of the indirect impacts of climate change is food insecurity. Agriculture in Pakistan, measured fourth best in the world, is already experiencing visible adverse impacts of climate change. Among many other food sources, potato crop remains one of the food security crops for developing nations. Potatoes are widely cultivated in Pakistan. To assess the impact of climate change on potato crop in Pakistan, it is imperative to analyze its distribution under future climate change scenarios using Species Distribution Models (SDMs). Maximum Entropy Model is used in this study to predict the spatial distribution of Potato in 2070 using two CMIP5 models for two climate change scenarios (RCP 4.5 and RCP 8.5). 19 Bioclimatic variables are incorporated along with other contributing variables like soil type, elevation and irrigation. The results indicate slight decrease in the suitable area for potato growth in RCP 4.5 and drastic decrease in suitable area in RCP 8.5 for both models. The performance evaluation of the model is based on AUC. AUC value of 0.85 suggests the fitness of the model and thus, it is applicable to predict the suitable climate for potato production in Pakistan. Sustainable potato cultivation is needed to increase productivity in developing countries while promoting better resource management and optimization.
  • Item
    Chapter scientists in the IPCC AR5-experience and lessons learned
    (Amsterdam [u.a.] : Elsevier, 2015) Schulte-Uebbing, Lena; Hansen, Gerrit; Hernández, Ariel Macaspac; Winter, Marten
    IPCC Assessment Reports provide timely and accurate information on anthropogenic climate change to policy makers and the public. The reports are written by hundreds of scientists in a voluntary, collaborative effort. Growing amounts of literature and complex procedural and administrative requirements, however, make this effort a substantial management challenge next to a scientific one. During the 5th Assessment Cycle, IPCC Working Groups II and III initiated a program that recruited volunteer scientific assistants who provided technical and logistical support to author teams. In this paper we describe and analyze strengths and weaknesses of this ‘Chapter Scientist program’, based on an extensive survey among Chapter Scientists (CS) and interviews with other stakeholders. We conclude that the program was a useful innovation that that enabled authors to focus more on their core scientific tasks and that contributed to improving the quality of the assessment. We highly recommend similar programs for future scientific assessments. Key criteria for success that we identified are (a) involvement of early-career scientists as CS, (b) close integration of CS in the assessment process, (c) recruitment of CS through an open call to achieve transparency, and (d) provision of funds for such a program to support travel costs and compensation of CS.
  • Item
    Perspectives from CO+RE: How COVID-19 changed our food systems and food security paradigms
    (Amsterdam : Elsevier, 2020) Bakalis, Serafim; Valdramidis, Vasilis P.; Argyropoulos, Dimitrios; Ahrne, Lilia; Chen, Jianshe; Cullen, P.J.; Cummins, Enda; Datta, Ashim K.; Emmanouilidis, Christos; Foster, Tim; Fryer, Peter J.; Gouseti, Ourania; Hospido, Almudena; Knoerzer, Kai; LeBail, Alain; Marangoni, Alejandro G.; Rao, Pingfan; Schlüter, Oliver K.; Taoukis, Petros; Xanthakis, Epameinondas; Van Impe, Jan F.M.
    [no abstract available]
  • Item
    Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry
    (Cambridge : Soc., 2015) Hanf, Stefan; Fischer, Sarah; Hartmann, Henrik; Keiner, Robert; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten
    Photosynthesis and respiration are major components of the plant carbon balance. During stress, like drought, carbohydrate supply from photosynthesis is reduced and the Krebs cycle respiration must be fueled with other stored carbon compounds. However, the dynamics of storage use are still unknown. The respiratory quotient (RQ, CO2 released per O2 consumed during respiration) is an excellent indicator of the nature of the respiration substrate. In plant science, however, online RQ measurements have been challenging or even impossible so far due to very small gas exchange fluxes during respiration. Here we apply cavity-enhanced multi-gas Raman spectrometry (CERS) for online in situ RQ measurements in drought-tolerant pine (Pinus sylvestris [L.]) and drought-intolerant spruce (Picea abies [L. H. Karst]). Two different treatments, drought and shading, were applied to reduce photosynthesis and force dependency on stored substrates. Changes in respiration rates and RQ values were continuously monitored over periods of several days with low levels of variance. The results show that both species switched from COH-dominated respiration (RQ = 1.0) to a mixture of substrates during shading (RQ = 0.77–0.81), while during drought only pine did so (RQ = 0.75). The gas phase measurements were complemented by concentration measurements of non-structural carbohydrates and lipids. These first results suggest a physiological explanation for greater drought tolerance in pine. CERS was proven as powerful technique for non-consumptive and precise real-time monitoring of respiration rates and respirational quotients for the investigation of plant metabolism under drought stress conditions that are predicted to increase with future climate change.
  • Item
    Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland
    (Wien [u.a.] : Springer, 2020) Piniewski, Mikołaj; Marcinkowski, Paweł; O’Keeffe, Joanna; Szcześniak, Mateusz; Nieróbca, Anna; Kozyra, Jerzy; Kundzewicz, Zbigniew W.; Okruszko, Tomasz
    Evidence shows that soil moisture (SM) anomalies (deficits or excesses) are the key factor affecting crop yield in rain-fed agriculture. Over last decades, Poland has faced several major droughts and at least one major soil moisture excess event leading to severe crop losses. This study aims to simulate the multi-annual variability of SM anomalies in Poland, using a process-based SWAT model and to assess the effect of climate change on future extreme SM conditions, potentially affecting crop yields in Poland. A crop-specific indicator based on simulated daily soil moisture content for the critical development stages of investigated crops (winter cereals, spring cereals, potato and maize) was designed, evaluated for past conditions against empirical crop-weather indices (CWIs), and applied for studying future climate conditions. The study used an ensemble of nine bias-corrected EURO-CORDEX projections for two future horizons: 2021–2050 and 2071–2100 under two Representative Concentration Pathways: RCP4.5 and 8.5. Historical simulation results showed that SWAT was capable of capturing major SM deficit and excess episodes for different crops in Poland. For spring cereals, potato and maize, despite a large model spread, projections generally showed increase of severity of soil moisture deficits, as well as of total area affected by them. Ensemble median fraction of land with extreme soil moisture deficits, occupied by each of these crops, is projected to at least double in size. The signals of change in soil moisture excesses for potato and maize were more dependent on selection of RCP and future horizon. © 2020, The Author(s).
  • Item
    Medical ethics in the Anthropocene: how are €100 billion of German physicians' pension funds invested?
    (Amsterdam : Elsevier, 2019) Schulz, Christian M.; Ahrend, Klaus-Michael; Schneider, Gerhard; Hohendorf, Gerrit; Schellnhuber, Hans Joachim; Busse, Reinhard
    [No abstract available]
  • Item
    Farmer typology to understand differentiated climate change adaptation in Himalaya
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Shukla, Roopam; Agarwal, Ankit; Gornott, Christoph; Sachdeva, Kamna; Joshi, P.K.
    Smallholder farmers’ responses to the climate-induced agricultural changes are not uniform but rather diverse, as response adaptation strategies are embedded in the heterogonous agronomic, social, economic, and institutional conditions. There is an urgent need to understand the diversity within the farming households, identify the main drivers and understand its relationship with household adaptation strategies. Typology construction provides an efficient method to understand farmer diversity by delineating groups with common characteristics. In the present study, based in the Uttarakhand state of Indian Western Himalayas, five farmer types were identified on the basis of resource endowment and agriculture orientation characteristics. Factor analysis followed by sequential agglomerative hierarchial and K-means clustering was use to delineate farmer types. Examination of adaptation strategies across the identified farmer types revealed that mostly contrasting and type-specific bundle of strategies are adopted by farmers to ensure livelihood security. Our findings show that strategies that incurred high investment, such as infrastructural development, are limited to high resource-endowed farmers. In contrast, the low resourced farmers reported being progressively disengaging with farming as a livelihood option. Our results suggest that the proponents of effective adaptation policies in the Himalayan region need to be cognizant of the nuances within the farming communities to capture the diverse and multiple adaptation needs and constraints of the farming households. © 2019, The Author(s).
  • Item
    Anticipation-induced social tipping: can the environment be stabilised by social dynamics?
    (Berlin ; Heidelberg : Springer, 2021) Müller, Paul Manuel; Heitzig, Jobst; Kurths, Jürgen; Lüdge, Kathy; Wiedermann, Marc
    In the past decades, human activities caused global Earth system changes, e.g., climate change or biodiversity loss. Simultaneously, these associated impacts have increased environmental awareness within societies across the globe, thereby leading to dynamical feedbacks between the social and natural Earth system. Contemporary modelling attempts of Earth system dynamics rarely incorporate such co-evolutions and interactions are mostly studied unidirectionally through direct or remembered past impacts. Acknowledging that societies have the additional capability for foresight, this work proposes a conceptual feedback model of socio-ecological co-evolution with the specific construct of anticipation acting as a mediator between the social and natural system. Our model reproduces results from previous sociological threshold models with bistability if one assumes a static environment. Once the environment changes in response to societal behaviour, the system instead converges towards a globally stable, but not necessarily desired, attractor. Ultimately, we show that anticipation of future ecological states then leads to metastability of the system where desired states can persist for a long time. We thereby demonstrate that foresight and anticipation form an important mechanism which, once its time horizon becomes large enough, fosters social tipping towards behaviour that can stabilise the environment and prevents potential socio-ecological collapse.
  • Item
    The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
    (Katlenburg-Lindau : Copernicus, 2020) Franke, James A.; Müller, Christoph; Elliott, Joshua; Ruane, Alex C.; Jägermeyr, Jonas; Balkovic, Juraj; Ciais, Philippe; Dury, Marie; Falloon, Pete D.; Folberth, Christian; François, Louis; Hank, Tobias; Hoffmann, Munir; Izaurralde, R. Cesar; Jacquemin, Ingrid; Jones, Curtis; Khabarov, Nikolay; Koch, Marian; Li, Michelle; Liu, Wenfeng; Olin, Stefan; Phillips, Meridel; Pugh, Thomas A. M.; Reddy, Ashwan; Wang, Xuhui; Williams, Karina; Zabel, Florian; Moyer, Elisabeth J.
    Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.