Search Results

Now showing 1 - 10 of 169
  • Item
    Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging
    (Washington, DC : ACS, 2020) García-Álvarez, Rafaela; Chen, Lisa; Nedilko, Alexander; Sánchez-Iglesias, Ana; Rix, Anne; Lederle, Wiltrud; Pathak, Vertika; Lammers, Twan; von Plessen, Gero; Kostarelos, Kostas; Liz-Marzán, Luis M.; Kuehne, Alexander J.C.; Chigrin, Dmitry N.
    Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.
  • Item
    Self-Regenerating Soft Biophotovoltaic Devices
    (Washington, DC : ACS Publications, 2018) Qiu, Xinkai; Castañeda Ocampo, Olga; de Vries, Hendrik W.; van Putten, Maikel; Loznik, Mark; Herrmann, Andreas; Chiechi, Ryan C.
    This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. © 2018 American Chemical Society.
  • Item
    Hierarchical fibrous guiding cues at different scales influence linear neurite extension
    ([Amsterdam] : Elsevier, 2020) Omidinia-Anarkoli, Abdolrahman; Ephraim, John Wesley; Rimal, Rahul; De Laporte, Laura
    Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 μm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite “decision-making” behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. Statement of Significance: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior. © 2020
  • Item
    Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhou, Yu; Huo, Shuaidong; Loznik, Mark; Göstl, Robert; Boersma, Arnold J.; Herrmann, Andreas
    Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound
    (Weinheim : Wiley-VCH, 2021) Zhao, Pengkun; Huo, Shuaidong; Fan, Jilin; Chen, Junlin; Kiessling, Fabian; Boersma, Arnold J.; Göstl, Robert; Herrmann, Andreas
    The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Anti-Stokes Stress Sensing: Mechanochemical Activation of Triplet-Triplet Annihilation Photon Upconversion
    (Weinheim : Wiley-VCH, 2019) Yildiz, Deniz; Baumann, Christoph; Mikosch, Annabel; Kuehne, Alexander J.C.; Herrmann, Andreas; Göstl, Robert
    The development of methods to detect damage in macromolecular materials is of paramount importance to understand their mechanical failure and the structure–property relationships of polymers. Mechanofluorophores are useful and sensitive molecular motifs for this purpose. However, to date, tailoring of their optical properties remains challenging and correlating emission intensity to force induced material damage and the respective events on the molecular level is complicated by intrinsic limitations of fluorescence and its detection techniques. Now, this is tackled by developing the first stress-sensing motif that relies on photon upconversion. By combining the Diels–Alder adduct of a π-extended anthracene with the porphyrin-based triplet sensitizer PtOEP in polymers, triplet–triplet annihilation photon upconversion of green to blue light is mechanochemically activated in solution as well as in the solid state. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Multicolor Mechanofluorophores for the Quantitative Detection of Covalent Bond Scission in Polymers
    (Weinheim : Wiley-VCH, 2021) Baumann, Christoph; Stratigaki, Maria; Centeno, Silvia P.; Göstl, Robert
    The fracture of polymer materials is a multiscale process starting with the scission of a single molecular bond advancing to a site of failure within the bulk. Quantifying the bonds broken during this process remains a big challenge yet would help to understand the distribution and dissipation of macroscopic mechanical energy. We here show the design and synthesis of fluorogenic molecular optical force probes (mechanofluorophores) covering the entire visible spectrum in both absorption and emission. Their dual fluorescent character allows to track non-broken and broken bonds in dissolved and bulk polymers by fluorescence spectroscopy and microscopy. Importantly, we develop an approach to determine the absolute number and relative fraction of intact and cleaved bonds with high local resolution. We anticipate that our mechanofluorophores in combination with our quantification methodology will allow to quantitatively describe fracture processes in materials ranging from soft hydrogels to high-performance polymers. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Reversibly Photo-Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers
    (Weinheim : Wiley-VCH, 2020) Sun, Jing; Ma, Chao; Maity, Sourav; Wang, Fan; Zhou, Yu; Portale, Giuseppe; Göstl, Robert; Roos, Wouter H.; Zhang, Hongjie; Liu, Kai; Herrmann, Andreas
    Light-responsive materials have been extensively studied due to the attractive possibility of manipulating their properties with high spatiotemporal control in a non-invasive fashion. This stimulated the development of a series of photo-deformable smart devices. However, it remained a challenge to reversibly modulate the stiffness and toughness of bulk materials. Here, we present bioengineered protein fibers and their optomechanical manipulation by employing electrostatic interactions between supercharged polypeptides (SUPs) and an azobenzene (Azo)-based surfactant. Photo-isomerization of the Azo moiety from the E- to Z-form reversibly triggered the modulation of tensile strength, stiffness, and toughness of the bulk protein fiber. Specifically, the photo-induced rearrangement into the Z-form of Azo possibly strengthened cation–π interactions within the fiber material, resulting in an around twofold increase in the fiber's mechanical performance. The outstanding mechanical and responsive properties open a path towards the development of SUP-Azo fibers as smart stimuli-responsive mechano-biomaterials. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Modular and Versatile Trans-Encoded Genetic Switches
    (Weinheim : Wiley-VCH, 2020) Paul, Avishek; Warszawik, Eliza M.; Loznik, Mark; Boersma, Arnold J.; Herrmann, Andreas
    Current bacterial RNA switches suffer from lack of versatile inputs and are difficult to engineer. We present versatile and modular RNA switches that are trans-encoded and based on tRNA-mimicking structures (TMSs). These switches provide a high degree of freedom for reengineering and can thus be designed to accept a wide range of inputs, including RNA, small molecules, and proteins. This powerful approach enables control of the translation of protein expression from plasmid and genome DNA. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA