Search Results

Now showing 1 - 10 of 17
Loading...
Thumbnail Image
Item

Topography evolution of germanium thin films synthesized by pulsed laser deposition

2017, Schumacher, P., Mayr, S.G., Rauschenbach, B.

Germanium thin films were deposited by Pulsed Laser Deposition (PLD) onto single crystal Ge (100) and Si (100) substrates with a native oxide film on the surface. The topography of the surface was investigated by Atomic Force Microscopy (AFM) to evaluate the scaling behavior of the surface roughness of amorphous and polycrystalline Ge films grown on substrates with different roughnesses. Roughness evolution was interpreted within the framework of stochastic rate equations for thin film growth. Here the Kardar-Parisi-Zhang equation was used to describe the smoothening process. Additionally, a roughening regime was observed in which 3-dimensional growth occurred. Diffusion of the deposited Ge adatoms controlled the growth of the amorphous Ge thin films. The growth of polycrystalline thin Ge films was dominated by diffusion processes only in the initial stage of the growth.

Loading...
Thumbnail Image
Item

Investigation of room temperature multispin-assisted bulk diamond 13C hyperpolarization at low magnetic fields

2018, Wunderlich, Ralf, Kohlrautz, Jonas, Abel, Bernd, Haase, Jürgen, Meijer, Jan

In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.

Loading...
Thumbnail Image
Item

Reactive ion beam figuring of optical aluminium surfaces

2017, Bauer, Jens, Frost, Frank, Arnold, Thomas

Ultra-smooth and arbitrarily shaped reflective optics are necessary for further progress in EUV/XUV lithography, x-ray and synchrotron technology. As one of the most important technological mirror optic materials, aluminium behaves in a rather difficult way in ultra-precision machining with such standard techniques as diamond-turning and subsequent ion beam figuring (IBF). In particular, in the latter, a strong surface roughening is obtained. Hence, up to now it has not been possible to attain the surface qualities required for UV or just visible spectral range applications. To overcome the limitations mainly caused by the aluminium alloy structural and compositional conditions, a reactive ion beam machining process using oxygen process gas is evaluated. To clarify the principle differences in the effect of oxygen gas contrary to oxygen ions on aluminium surface machining, we firstly focus on chemical-assisted ion beam etching (CAIBE) and reactive ion beam etching (RIBE) experiments in a phenomenological manner. Then, the optimum process route will be explored within a more quantitative analysis applying the concept of power spectral density (PSD) for a sophisticated treatment of the surface topography. Eventually, the surface composition is examined by means of dynamic secondary ion mass spectrometry (SIMS) suggesting a characteristic model scheme for the chemical modification of the aluminium surface during oxygen ion beam machining. Monte Carlo simulations were applied to achieve a more detailed process conception.

Loading...
Thumbnail Image
Item

Improved ion beam tools for ultraprecision figure correction of curved aluminum mirror surfaces

2018, Bauer, Jens, Ulitschka, Melanie, Pietag, Fred, Arnold, Thomas

Aluminum mirrors offer great potential for satisfying the increasing demand in high-performance optical components for visible and ultraviolet applications. Ion beam figuring is an established finishing technology and in particular a promising technique for direct aluminum figure error correction. For the machining of strongly curved or arbitrarily shaped surfaces as well as the correction of low-to-mid spatial frequency figure errors, the usage of a high-performance ion beam source with low tool width is mandatory. For that reason, two different concepts of ion beam generation with high ion current density and narrow beam width are discussed. (1) A concave ion beam extraction grid system is used for apertureless constriction of ion beams in the low millimeter range. An oxygen ion beam with a full-width at half-maximum (FWHM) of 4.0 mm with an ion current density of 29.8  mA  /  cm2 was achieved. (2) For even smaller ion beams, a conic aperture design with a submillimeter-sized exit opening was tested. A nitrogen ion beam with an FWHM down to 0.62 mm with an ion current density of 4.6  mA  /  cm2 was obtained. In situ ion current density mapping is performed by scanning Faraday probe measurements. Special interest is set on the data evaluation for submillimeter ion beam analysis.

Loading...
Thumbnail Image
Item

Characteristics of diamond turned NiP smoothed with ion beam planarization technique

2017, Li, Yaguo, Takino, Hideo, Frost, Frank

Background: Diamond turning is widely used in machining metals and semiconductors but the turning marks are incurred on machined components due to the mechanics of the technology. The marks are generally harmful to the systems comprising of the machined components. Therefore, the capability of ion beam planarization (IBP) to reduce turning marks of diamond turned metal surfaces was investigated using NiP as an example. Methods: The turning marks and thereby roughness was reduced by IBP with respect to different spatial wavelengths and amplitudes of turning marks. Different thickness of coating resist was also examined in order to find out the potential effects of resist thickness on the reduction of turning marks and roughness. Additionally, the effect of multiple planarization steps was also analyzed. Results: The spatial wavelength and depth of turning marks have only minor impact on the degree of surface roughness reduction. Thicker coating tends to achieve smoother surface after coating turned NiP while ion beam etching can keep surface roughness almost unchanged in our experiments. The surface roughness of diamond turned NiP drops exponentially with processing steps under experimented conditions. Using up to five IBP steps, the surface roughness can be reduced up to one order of magnitude (from Rq ~ 6.5 nm to Rq ~ 0.7 nm). Conclusions: IBP technique performs very well in reducing turning marks on diamond turned NiP surfaces. The surface roughness can be further improved by optimizing the properties of planarizing resist layer and coating processes to enhance the IBP technique as a final surface finishing technology.

Loading...
Thumbnail Image
Item

Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis

2018, Lehnert, J., Spemann, D., Surjuse, S., Mensing, M., Grüner, C., With, P., Schumacher, P., Finzel, A., Hirsch, D., Rauschenbach, B.

This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).

Loading...
Thumbnail Image
Item

SERS analysis of Ag nanostructures produced by ion-beam deposition

2018, Atanasov, P.A., Nedyalkov, N.N., Nikov, Ru.G., Grüner, Ch., Rauschenbach, B., Fukata, N.

This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).

Loading...
Thumbnail Image
Item

Laser-induced surface modification of biopolymers - Micro/nanostructuring and functionalization

2018, Stankova, N.E., Atanasov, P.A., Nedyalkov, N.N., Tatchev, Dr., Kolev, K.N., Valova, E.I., Armyanov, St.A., Grochowska, K., Śliwiński, G., Fukata, N., Hirsch, D., Rauschenbach, B.

The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters - wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers' surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

Loading...
Thumbnail Image
Item

Evidence for Efficient Pathway to Produce Slow Electrons by Ground-state Dication in Clusters

2017, You, Daehyun, Fukuzawa, Hironobu, Sakakibara, Yuta, Takanashi, Tsukasa, Ito, Yuta, Maliyar, Gianluigi G., Motomura, Koji, Nagaya, Kiyonobu, Nishiyama, Toshiyuki, Asa, Kazuki, Sato, Yuhiro, Saito, Norio, Oura, Masaki, Schöffler, Markus, Kastirke, Gregor, Hergenhahn, Uwe, Stumpf, Vasili, Gohkberg, Kirill, Kuleff, Alexander I., Cederbaum, Lorenz S., Ueda, Kiyoshi

We present an experimental evidence for a so-far unobserved, but potentially very important step relaxation cascades following inner-shell ionization of a composite system: Multiply charged ionic states created after Auger decay may be neutralized by electron transfer from a neighboring species, producing at the same time a low-energy free electron. This electron transfer-mediated decay (ETMD) called process is effective even after Auger decay into the dicationic ground state. Here, we report the ETMD of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

Loading...
Thumbnail Image
Item

Time-resolved ion energy and charge state distributions in pulsed cathodic arc plasmas of Nb−Al cathodes in high vacuum

2018-5-15, Zöhrer, Siegfried, Anders, André, Franz, Robert

Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb−Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called 'velocity rule' or the 'cohesive energy rule', are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.