Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Enantio-sensitive unidirectional light bending

2021, Ayuso, David, Ordonez, Andres F., Decleva, Piero, Ivanov, Misha, Smirnova, Olga

Structured light, which exhibits nontrivial intensity, phase, and polarization patterns in space, has key applications ranging from imaging and 3D micromanipulation to classical and quantum communication. However, to date, its application to molecular chirality has been limited by the weakness of magnetic interactions. Here we structure light’s local handedness in space to introduce and realize an enantio-sensitive interferometer for efficient chiral recognition without magnetic interactions, which can be seen as an enantio-sensitive version of Young’s double slit experiment. Upon interaction with isotropic chiral media, such chirality-structured light effectively creates chiral emitters of opposite handedness, located at different positions in space. We show that if the distribution of light’s handedness breaks left-right symmetry, the interference of these chiral emitters leads to unidirectional bending of the emitted light, in opposite directions in media of opposite handedness, even if the number of the left-handed and right-handed emitters excited in the medium is exactly the same. Our work introduces the concepts of polarization of chirality and chirality-polarized light, exposes the immense potential of sculpting light’s local chirality, and offers novel opportunities for efficient chiral discrimination, enantio-sensitive optical molecular fingerprinting and imaging on ultrafast time scales.

Loading...
Thumbnail Image
Item

Attosecond time-resolved photoelectron holography

2018, Porat, G., Alon, G., Rozen, S., Pedatzur, O., Krüger, M., Azoury, D., Natan, A., Orenstein, G., Bruner, B.D., Vrakking, M. J.J., Dudovich, N.

Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography - all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds.

Loading...
Thumbnail Image
Item

Anisotropic photoemission time delays close to a Fano resonance

2018, Cirelli, Claudio, Marante, Carlos, Heuser, Sebastian, Petersson, C.L.M., Galán, Álvaro Jiménez, Argenti, Luca, Zhong, Shiyang, Busto, David, Isinger, Marcus, Nandi, Saikat, Maclot, Sylvain, Rading, Linnea, Johnsson, Per, Gisselbrecht, Mathieu, Lucchini, Matteo, Gallmann, Lukas, Dahlström, J. Marcus, Lindroth, Eva, L’Huillier, Anne, Martín, Fernando, Keller, Ursula

Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20-40 eV spectral range, in the vicinity of the 3s -1 np autoionizing resonances. We present measurements of the differential photoionization cross section and extract energy and angle-dependent atomic time delays with an attosecond interferometric method. With the support of a theoretical model, we are able to attribute a large part of the measured time delay anisotropy to the presence of autoionizing resonances, which not only distort the phase of the emitted photoelectron wave packet but also introduce an angular dependence.

Loading...
Thumbnail Image
Item

Publisher Correction: Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters (Nature communications (2017) 8 1 (1181))

2018, Passig, Johannes, Zherebtsov, Sergey, Irsig, Robert, Arbeiter, Mathias, Peltz, Christian, Göde, Sebastian, Skruszewicz, Slawomir, Meiwes-Broer, Karl-Heinz, Tiggesbäumker, Josef, Kling, Matthias F., Fennel, Thomas

The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article. The original PDF version of this Article contained an error in Equation 1. A dot over the first occurrence of the variable ri was missing, and incorrectly read: (Formula Presented). The correct form of Equation 1 is as follows: (Formula Presented). This has now been corrected in the PDF version of the Article. The HTML version was correct from the time of publication. The original HTML version of this Article contained errors in Equation 2 and Equation 4. In Equation 2, a circle over the first occurrence of the variable ri replaced the intended dot, and incorrectly read: (Formula Presented). The correct form of Equation 2 is as follows: (Formula Presented). In Equation 4, circles over the first and fifth occurrences of the variable ri replaced the intended dots, and incorrectly read: (Formula Presented). The correct form of Equation 4 is as follows: (Formula Presented). This has now been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.

Loading...
Thumbnail Image
Item

Topological protection versus degree of entanglement of two-photon light in photonic topological insulators

2021, Tschernig, Konrad, Jimenez-Galán, Álvaro, Christodoulides, Demetrios N., Ivanov, Misha, Busch, Kurt, Bandres, Miguel A., Perez-Leija, Armando

Topological insulators combine insulating properties in the bulk with scattering-free transport along edges, supporting dissipationless unidirectional energy and information flow even in the presence of defects and disorder. The feasibility of engineering quantum Hamiltonians with photonic tools, combined with the availability of entangled photons, raises the intriguing possibility of employing topologically protected entangled states in optical quantum computing and information processing. However, while two-photon states built as a product of two topologically protected single-photon states inherit full protection from their single-photon “parents”, a high degree of non-separability may lead to rapid deterioration of the two-photon states after propagation through disorder. In this work, we identify physical mechanisms which contribute to the vulnerability of entangled states in topological photonic lattices. Further, we show that in order to maximize entanglement without sacrificing topological protection, the joint spectral correlation map of two-photon states must fit inside a well-defined topological window of protection.

Loading...
Thumbnail Image
Item

Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters

2017, Passig, Johannes, Zherebtsov, Sergey, Irsig, Robert, Arbeiter, Mathias, Peltz, Christian, Göde, Sebastian, Skruszewicz, Slawomir, Meiwes-Broer, Karl-Heinz, Tiggesbäumker, Josef, Kling, Matthias F., Fennel, Thomas

In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.

Loading...
Thumbnail Image
Item

Onset of Bloch oscillations in the almost-strong-field regime

2022-12-13, Reislöhner, Jan, Kim, Doyeong, Babushkin, Ihar, Pfeiffer, Adrian N.

In the field of high-order harmonic generation from solids, the electron motion typically exceeds the edge of the first Brillouin zone. In conventional nonlinear optics, on the other hand, the excursion of band electrons is negligible. Here, we investigate the transition from conventional nonlinear optics to the regime where the crystal electrons begin to explore the first Brillouin zone. It is found that the nonlinear optical response changes abruptly already before intraband currents due to ionization become dominant. This is observed by an interference structure in the third-order harmonic generation of few-cycle pulses in a non-collinear geometry. Although approaching Keldysh parameter γ = 1, this is not a strong-field effect in the original sense, because the iterative series still converges and reproduces the interference structure. The change of the nonlinear interband response is attributed to Bloch motion of the reversible (or transient or virtual) population, similar to the Bloch motion of the irreversible (or real) population which affects the intraband currents that have been observed in high-order harmonic generation.

Loading...
Thumbnail Image
Item

In situ single-shot diffractive fluence mapping for X-ray free-electron laser pulses

2018, Schneider, Michael, Günther, Christian M., Pfau, Bastian, Capotondi, Flavio, Manfredda, Michele, Zangrando, Marco, Mahne, Nicola, Raimondi, Lorenzo, Pedersoli, Emanuele, Naumenko, Denys, Eisebitt, Stefan

Free-electron lasers (FELs) in the extreme ultraviolet (XUV) and X-ray regime opened up the possibility for experiments at high power densities, in particular allowing for fluence-dependent absorption and scattering experiments to reveal non-linear light-matter interactions at ever shorter wavelengths. Findings of such non-linear effects are met with tremendous interest, but prove difficult to understand and model due to the inherent shot-to-shot fluctuations in photon intensity and the often structured, non-Gaussian spatial intensity profile of a focused FEL beam. Presently, the focused beam is characterized and optimized separately from the actual experiment. Here, we present the simultaneous measurement of XUV diffraction signals from solid samples in tandem with the corresponding single-shot spatial fluence distribution on the actual sample. Our in situ characterization scheme enables direct monitoring of the sample illumination, providing a basis to optimize and quantitatively understand FEL experiments.

Loading...
Thumbnail Image
Item

Attosecond recorder of the polarization state of light

2018, Jiménez-Galán, Álvaro, Dixit, Gopal, Patchkovskii, Serguei, Smirnova, Olga, Morales, Felipe, Ivanov, Misha

High harmonic generation in multi-color laser fields opens the opportunity of generating isolated attosecond pulses with high ellipticity. Such pulses hold the potential for time-resolving chiral electronic, magnetization, and spin dynamics at their natural timescale. However, this potential cannot be realized without characterizing the exact polarization state of light on the attosecond timescale. Here we propose and numerically demonstrate a complete solution of this problem. Our solution exploits the extrinsic two-dimensional chirality induced in an atom interacting with the chiral attosecond pulse and a linearly polarized infrared probe. The resulting asymmetry in the photoelectron spectra allows to reconstruct the complete polarization state of the attosecond pulse, including its possible time dependence. The challenging problem of distinguishing circularly polarized, partially polarized, or unpolarized pulses in the extreme ultraviolet range is also resolved. We expect this approach to become the core ingredient for attosecond measurements of chiral-sensitive processes in gas and condensed phase.

Loading...
Thumbnail Image
Item

Publisher Correction: Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source (Nature communications (2017) 8 1 (493))

2018, Rupp, Daniela, Monserud, Nils, Langbehn, Bruno, Sauppe, Mario, Zimmermann, Julian, Ovcharenko, Yevheniy, Möller, Thomas, Frassetto, Fabio, Poletto, Luca, Trabattoni, Andrea, Calegari, Francesca, Nisoli, Mauro, Sander, Katharina, Peltz, Christian, Vrakking, Marc J., Fennel, Thomas, Rouzée, Arnaud

In the original version of this Article, the affiliation for Luca Poletto was incorrectly given as 'European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Hamburg, Germany', instead of the correct 'CNR, Istituto di Fotonica e Nanotecnologie Padova, Via Trasea 7, 35131 Padova, Italy'. This has now been corrected in both the PDF and HTML versions of the Article.