Search Results

Now showing 1 - 10 of 18
Loading...
Thumbnail Image
Item

Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting

2021, Steinkühler, Jan, Fonda, Piermarco, Bhatia, Tripta, Zhao, Ziliang, Leomil, Fernanda S. C., Lipowsky, Reinhard, Dimova, Rumiana

Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2–4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a “superelastic” response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.

Loading...
Thumbnail Image
Item

Memory effect assisted imaging through multimode optical fibres

2021, Li, Shuhui, Horsley, Simon A.R., Tyc, Tomáš, Čižmár, Tomáš, Phillips, David B.

When light propagates through opaque material, the spatial information it holds becomes scrambled, but not necessarily lost. Two classes of techniques have emerged to recover this information: methods relying on optical memory effects, and transmission matrix (TM) approaches. Here we develop a general framework describing the nature of memory effects in structures of arbitrary geometry. We show how this framework, when combined with wavefront shaping driven by feedback from a guide-star, enables estimation of the TM of any such system. This highlights that guide-star assisted imaging is possible regardless of the type of memory effect a scatterer exhibits. We apply this concept to multimode fibres (MMFs) and identify a ‘quasi-radial’ memory effect. This allows the TM of an MMF to be approximated from only one end - an important step for micro-endoscopy. Our work broadens the applications of memory effects to a range of novel imaging and optical communication scenarios.

Loading...
Thumbnail Image
Item

Characterisation of S. aureus/MRSA CC1153 and review of mobile genetic elements carrying the fusidic acid resistance gene fusC

2021, Monecke, Stefan, Müller, Elke, Braun, Sascha D., Armengol-Porta, Marc, Bes, Michèle, Boswihi, Samar, El-Ashker, Maged, Engelmann, Ines, Gawlik, Darius, Gwida, Mayada, Hotzel, Helmut, Nassar, Rania, Reissig, Annett, Ruppelt-Lorz, Antje, Senok, Abiola, Somily, Ali M., Udo, Edet E., Ehricht, Ralf

While many data on molecular epidemiology of MRSA are available for North America, Western Europe and Australia, much less is known on the distribution of MRSA clones elsewhere. Here, we describe a poorly known lineage from the Middle East, CC1153, to which several strains from humans and livestock belong. Isolates were characterised using DNA microarrays and one isolate from the United Arab Emirates was sequenced using Nanopore technology. CC1153 carries agr II and capsule type 5 genes. Enterotoxin genes are rarely present, but PVL is common. Associated spa types include t504, t903 and t13507. PVL-positive CC1153-MSSA were found in Egyptian cattle suffering from mastitis. It was also identified among humans with skin and soft tissue infections in Saudi Arabia, France and Germany. CC1153-MRSA were mainly observed in Arabian Gulf countries. Some isolates presented with a previously unknown SCCmec/SCCfus chimeric element in which a mec B complex was found together with the fusidic acid resistance gene fusC and accompanying genes including ccrA/B-1 recombinase genes. Other isolates carried SCCmec V elements that usually also included fusC. Distribution and emergence of CC1153-MRSA show the necessity of molecular characterization of MRSA that are resistant to fusidic acid. These strains pose a public health threat as they combine resistance to beta-lactams used in hospitals as well as to fusidic acid used in the community. Because of the high prevalence of fusC-positive MRSA in the Middle East, sequences and descriptions of SCC elements harbouring fusC and/or mecA are reviewed. When comparing fusC and its surrounding regions from the CC1153 strain to available published sequences, it became obvious that there are four fusC alleles and five distinct types of fusC gene complexes reminiscent to the mec complexes in SCCmec elements. Likewise, they are associated with different sets of ccrA/B recombinase genes and additional payload that might include entire mec complexes or SCCmec elements.

Loading...
Thumbnail Image
Item

Erratum: Author Correction: Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers (Scientific reports (2017) 7 1 (11761))

2018, Zeisberger, Matthias, Schmidt, Markus A.

This Article contains errors within Figure 7, in which certain curves are distorted. The correct Figure 7 appears below as Figure 1: (Figure Presented).

Loading...
Thumbnail Image
Item

Direct supercritical angle localization microscopy for nanometer 3D superresolution

2021, Dasgupta, Anindita, Deschamps, Joran, Matti, Ulf, Hübner, Uwe, Becker, Jan, Strauss, Sebastian, Jungmann, Ralf, Heintzmann, Rainer, Ries, Jonas

3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.

Loading...
Thumbnail Image
Item

IMAGE-IN: Interactive web-based multidimensional 3D visualizer for multi-modal microscopy images

2022, Gupta, Yubraj, Costa, Carlos, Pinho, Eduardo, A. Bastião Silva, Luís, Heintzmann, Rainer

Advances in microscopy hardware and storage capabilities lead to increasingly larger multidimensional datasets. The multiple dimensions are commonly associated with space, time, and color channels. Since “seeing is believing”, it is important to have easy access to user-friendly visualization software. Here we present IMAGE-IN, an interactive web-based multidimensional (N-D) viewer designed specifically for confocal laser scanning microscopy (CLSM) and focused ion beam scanning electron microscopy (FIB-SEM) data, with the goal of assisting biologists in their visualization and analysis tasks and promoting digital work-flows. This new visualization platform includes intuitive multidimensional opacity fine-tuning, shading on/off, multiple blending modes for volume viewers, and the ability to handle multichannel volumetric data in volume and surface views. The software accepts a sequence of image files or stacked 3D images as input and offers a variety of viewing options ranging from 3D volume/surface rendering to multiplanar reconstruction approaches. We evaluate the performance by comparing the loading and rendering timings of a heterogeneous dataset of multichannel CLSM and FIB-SEM images on two devices with installed graphic cards, as well as comparing rendered image quality between ClearVolume (the ImageJ open-source desktop viewer), Napari (the Python desktop viewer), Imaris (the closed-source desktop viewer), and our proposed IMAGE-IN web viewer.

Loading...
Thumbnail Image
Item

Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification

2022, Böke, Julia Sophie, Popp, Jürgen, Krafft, Christoph

In recent years, vibrational spectroscopic techniques based on Fourier transform infrared (FTIR) or Raman microspectroscopy have been suggested to fulfill the unmet need for microplastic particle detection and identification. Inter-system comparison of spectra from reference polymers enables assessing the reproducibility between instruments and advantages of emerging quantum cascade laser-based optical photothermal infrared (O-PTIR) spectroscopy. In our work, IR and Raman spectra of nine plastics, namely polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polycarbonate, polystyrene, silicone, polylactide acid and polymethylmethacrylate were simultaneously acquired using an O-PTIR microscope in non-contact, reflection mode. Comprehensive band assignments were presented. We determined the agreement of O-PTIR with standalone attenuated total reflection FTIR and Raman spectrometers based on the hit quality index (HQI) and introduced a two-dimensional identification (2D-HQI) approach using both Raman- and IR-HQIs. Finally, microplastic particles were prepared as test samples from known materials by wet grinding, O-PTIR data were collected and subjected to the 2D-HQI identification approach. We concluded that this framework offers improved material identification of microplastic particles in environmental, nutritious and biological matrices.

Loading...
Thumbnail Image
Item

Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing

2022, Wang, Yu-Hao, Gong, Tian-Cheng, Ding, Ya-Xin, Li, Yang, Wang, Wei, Chen, Zi-Ang, Du, Nan, Covi, Erika, Farronato, Matteo, Ielmini, Daniele, Zhang, Xu-Meng, Luo, Qing

The spiking neural network (SNN), closely inspired by the human brain, is one of the most powerful platforms to enable highly efficient, low cost, and robust neuromorphic computations in hardware using traditional or emerging electron devices within an integrated system. In the hardware implementation, the building of artificial spiking neurons is fundamental for constructing the whole system. However, with the slowing down of Moore’s Law, the traditional complementary metal-oxide-semiconductor (CMOS) technology is gradually fading and is unable to meet the growing needs of neuromorphic computing. Besides, the existing artificial neuron circuits are complex owing to the limited bio-plausibility of CMOS devices. Memristors with volatile threshold switching (TS) behaviors and rich dynamics are promising candidates to emulate the biological spiking neurons beyond the CMOS technology and build high-efficient neuromorphic systems. Herein, the state-of-the-art about the fundamental knowledge of SNNs is reviewed. Moreover, we review the implementation of TS memristor-based neurons and their systems, and point out the challenges that should be further considered from devices to circuits in the system demonstrations. We hope that this review could provide clues and be helpful for the future development of neuromorphic computing with memristors.

Loading...
Thumbnail Image
Item

simpleISM—A straight forward guide to upgrade from confocal to ISM

2022, Goswami, Monalisa, Lachmann, René, Kretschmer, Robert, Heintzmann, Rainer

Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope. In this paper, we explain in detail, based on an Olympus Fluoview 300 system, how a scanning microscope can be upgraded into an image scanning microscope (ISM) using a simple camera-based detector and an Arduino Due providing a galvo driving and camera synchronization signals. We could confirm a resolution improvement as well as superconcentration and made the interesting observation of a reduced influence of laser fluctuations.

Loading...
Thumbnail Image
Item

Observation of direction instability in a fiber ring laser

2021, Arshad, Muhammad Assad, Hartung, Alexander, Pratiwi, Arni Candra, Jäger, Matthias

We report on the observation of a new phenomenon occurring in a fiber ring laser. This phenomenon is about the transition from an initially bidirectional emission of a reciprocal fiber ring laser to a unidirectional emission at a certain pump power threshold. In addition, the final direction is not predefined but appears to be randomly chosen every time the threshold is exceeded. Therefore, we term this new phenomenon direction instability. Furthermore, we provide a first discussion of how the instability threshold is influenced by the length and the loss of the cavity. We show that the threshold follows a power times length scaling, indicating a nonlinear origin.