Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters

2017, Passig, Johannes, Zherebtsov, Sergey, Irsig, Robert, Arbeiter, Mathias, Peltz, Christian, Göde, Sebastian, Skruszewicz, Slawomir, Meiwes-Broer, Karl-Heinz, Tiggesbäumker, Josef, Kling, Matthias F., Fennel, Thomas

In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems. We studied plasmon-enhanced photoemission from silver clusters and found that the directional acceleration can be controlled up to high kinetic energy with the relative phase of a two-color laser field. Our analysis reveals that the cluster's plasmonic near-field establishes a sub-cycle directional gate that enables the selective acceleration. The identified generic mechanism offers robust attosecond control of the electron acceleration at plasmonic nanostructures, opening perspectives for laser-based sources of attosecond electron pulses.

Loading...
Thumbnail Image
Item

Physics inspired compact modelling of BiFeO3 based memristors

2022, Yarragolla, Sahitya, Du, Nan, Hemke, Torben, Zhao, Xianyue, Chen, Ziang, Polian, Ilia, Mussenbrock, Thomas

With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFeO3 (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results.