Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

The effect of supported MoOX structures on the reaction pathways of propene formation in the metathesis of ethylene and 2-butene

2014, Hahn, T., Kondratenko, E.V., Linke, D.

The kind of surface MoOX structures on Al2O3–SiO2 was found to determine propene selectivity in the metathesis of ethylene and 2-butene. Compared to isolated tetrahedral MoOX species, their polymerized octahedral counterparts show significantly lower activity for isomerisation of 2- to 1-butene thus hindering non-selective metathesis of these butenes. In addition, they reveal higher ability to engage ethylene in propene formation.

Loading...
Thumbnail Image
Item

Cardio-respiratory coordination increases during sleep apnea

2014, Riedl, M., Müller, A., Kraemer, J.F., Penzel, T., Kurths, J., Wessel, N.

Cardiovascular diseases are the main source of morbidity and mortality in the United States with costs of more than $170 billion. Repetitive respiratory disorders during sleep are assumed to be a major cause of these diseases. Therefore, the understanding of the cardio-respiratory regulation during these events is of high public interest. One of the governing mechanisms is the mutual influence of the cardiac and respiratory oscillations on their respective onsets, the cardiorespiratory coordination (CRC). We analyze this mechanism based on nocturnal measurements of 27 males suffering from obstructive sleep apnea syndrome. Here we find, by using an advanced analysis technique, the coordigram, not only that the occurrence of CRC is significantly more frequent during respiratory sleep disturbances than in normal respiration (p-value<10-51) but also more frequent after these events (p-value<10-15). Especially, the latter finding contradicts the common assumption that spontaneous CRC can only be observed in epochs of relaxed conditions, while our newly discovered epochs of CRC after disturbances are characterized by high autonomic stress. Our findings on the connection between CRC and the appearance of sleep-disordered events require a substantial extension of the current understanding of obstructive sleep apneas and hypopneas.

Loading...
Thumbnail Image
Item

Wireless magnetic-based closed-loop control of self-propelled microjets

2014, Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Misra, S.

In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.3x10-10 A.m2 at magnetic field and linear velocity of 2 mT and 100 μm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 μm/s, and within an average region-of-convergence of 365 μm.

Loading...
Thumbnail Image
Item

Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages

2014, Pondman, K.M., Sobik, M., Nayak, A., Tsolaki, A.G., Jäkel, A., Flahaut, E., Hampel, S., ten Haken, B., Sim, R.B., Kishore, U.

Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. From the Clinical Editor: This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response.

Loading...
Thumbnail Image
Item

Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells

2014, Woltmann, B., Torger, B., Müller, M., Hempel, U.

Background: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.

Loading...
Thumbnail Image
Item

Benchmarking successional progress in a quantitative food web

2014, Boit, A., Gaedke, U.

Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto- and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population- and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of ecological theory to form a complete picture of successional progress within a pelagic food web. This comprehensive synthesis may be used as a benchmark for quantifying successional progress in other ecosystems.

Loading...
Thumbnail Image
Item

Change in the embedding dimension as an indicator of an approaching transition

2014, Neuman, Y., Marwan, N., Cohen, Y.

Predicting a transition point in behavioral data should take into account the complexity of the signal being influenced by contextual factors. In this paper, we propose to analyze changes in the embedding dimension as contextual information indicating a proceeding transitive point, called OPtimal Embedding tRANsition Detection (OPERAND). Three texts were processed and translated to time-series of emotional polarity. It was found that changes in the embedding dimension proceeded transition points in the data. These preliminary results encourage further research into changes in the embedding dimension as generic markers of an approaching transition point.

Loading...
Thumbnail Image
Item

Vinculin binding angle in podosomes revealed by high resolution microscopy

2014, Walde, M., Monypenny, J., Heintzmann, R., Jones, G.E., Cox, S.

Podosomes are highly dynamic actin-rich adhesive structures formed predominantly by cells of the monocytic lineage, which degrade the extracellular matrix. They consist of a core of F-actin and actin-regulating proteins, surrounded by a ring of adhesion-associated proteins such as vinculin. We have characterised the structure of podosomes in macrophages, particularly the structure of the ring, using three super-resolution fluorescence microscopy techniques: stimulated emission depletion microscopy, structured illumination microscopy and localisation microscopy. Rather than being round, as previously assumed, we found the vinculin ring to be created from relatively straight strands of vinculin, resulting in a distinctly polygonal shape. The strands bind preferentially at angles between 116° and 135°. Furthermore, adjacent vinculin strands are observed nucleating at the corners of the podosomes, suggesting a mechanism for podosome growth.

Loading...
Thumbnail Image
Item

Persistent effectivity of gas plasma-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology

2014, Hoentsch, M., Bussiahn, R., Rebl, H., Bergemann, C., Eggert, M., Frank, M., Von Woedtke, T., Nebe, B.

Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first timedependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics.

Loading...
Thumbnail Image
Item

Insulin adsorption to catheter materials used for intensive insulin therapy in critically ill patients: Polyethylene versus polyurethane - possible cause of variation in glucose control?

2014, Ley, S.C., Ammann, J., Herder, C., Dickhaus, T., Hartmann, M., Kindgen-Milles, D.

Introduction: Restoring and maintaining normoglycemia by intensified insulin therapy in critically ill patients is a matter of ongoing debate since the risk of hypoglycemia may outweigh positive effects on morbidity and mortality. In this context, adsorption of insulin to different catheter materials may contribute to instability of glucose control. We studied the adsorption of insulin to different tubing materials in vitro and the effects on glycemic control in vivo. Materials and Methods: In vitro experiments: A syringe pump was filled with 50 IU insulin diluted to 50 ml saline. A flow of 2 ml/h was perfused through polyethylene (PET) or polyurethane (PUR) tubing. Insulin concentrations were measured at the end of the tube for 24 hours using Bradford's protein assay. In vivo study: In a randomized double-blinded cross-over design, 10 intensive care patients received insulin via PET and PUR tubes for 24 hours each, targeting blood glucose levels of 80-150 mg/dl. We measured blood glucose levels, the insulin dose required to maintain target levels, and serum insulin and C-peptide levels. Results: In vitro experiments: After the start of the insulin infusion, only 20% (median, IQR 20-27) (PET) and 22% (IQR 16-27) (PUR) of the prepared insulin concentration were measured at the end of the 2 meter tubing. Using PET, after one hour infusion the concentration increased to 34% (IQR 29-36) and did not increase significantly during the next 24 hours (39% (IQR 39-40)). Using PUR, higher concentrations were detected than for PET at every measurement from 1 hour (82% (IQR 70-86)) to 24 hours (79% (IQR 64-87)). In vivo study: Glycemic control was effective and not different between groups. Significantly higher volumes of insulin solution had to be infused with PET compared to PUR (median PET 70.0 (IQR 56-82) ml vs. PUR 42 (IQR 31-63) ml; p=0.0015). Serum insulin concentrations did not decrease significantly one hour after changing to PET or PUR tubing. Conclusion: Polyurethane tubing systems allow application of insulin with significantly lower adsorption rates than polyethylene tubing systems. As a consequence, less insulin solution has to be infused to patients for effective blood glucose control. Tubing material of the insulin infusion may be crucial for safe and effective glycemic control in critically ill patients.