Search Results

Now showing 1 - 10 of 23
  • Item
    Ultrafast structural changes in SrTiO3 due to a superconducting phase transition in a YBa2Cu3O7 top layer
    (College Park, MD : Institute of Physics Publishing, 2010) Lübcke, A.; Zamponi, F.; Loetzsch, R.; Kämpfer, T.; Uschmann, I.; Große, V.; Schmidl, F.; Köttig, T.; Thürk, M.; Schwoerer, H.; Förster, E.; Seidel, P.; Sauerbrey, R.
    We investigate the structural response of SrTiO3 when Cooper pairs are broken in an epitaxially grown YBa2Cu3O 7 top layer due to both heating and optical excitation. The crystal structure is investigated by static, temperaturedependent and time-resolved x-ray diffraction. In the static case, a large strain field in SrTiO3 is formed in the proximity of the onset of the superconducting phase in the top layer, suggesting a relationship between both effects. For the time-dependent studies, we likewise find a large fraction of the probed volume of the SrTiO3 substrate strained if the top layer is superconducting. Upon optical breaking of Cooper pairs, the observed width of the rocking curve is reduced and its position is slightly shifted towards smaller angles. The dynamical theory of x-ray diffraction is used to model the measured rocking curves. We find that the thickness of the strained layer is reduced by about 200 nm on a sub-ps to ps timescale, but the strain value at the interface between SrTiO3 and YBa2Cu3O7 remains unaffected. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Towards deterministically controlled InGaAs/GaAs lateral quantum dot molecules
    (College Park, MD : Institute of Physics Publishing, 2008) Wang, L.; Rastelli, A.; Kiravittaya, S.; Atkinson, P.; Ding, F.; Bof Bufon, C.C.; Hermannstädter, C.; Witzany, M.; Beirne, G.J.; Michler, P.; Schmidt, O.G.
    We report on the fabrication, detailed characterization and modeling of lateral InGaAs quantum dot molecules (QDMs) embedded in a GaAs matrix and we discuss strategies to fully control their spatial configuration and electronic properties. The three-dimensional morphology of encapsulated QDMs was revealed by selective wet chemical etching of the GaAs top capping layer and subsequent imaging by atomic force microscopy (AFM). The AFM investigation showed that different overgrowth procedures have a profound consequence on the QDM height and shape. QDMs partially capped and annealed in situ for micro- photoluminescence spectroscopy consist of shallow but well-defined quantum dots (QDs) in contrast to misleading results usually provided by surface morphology measurements when they are buried by a thin GaAs layer. This uncapping approach is crucial for determining the QDM structural parameters, which are required for modeling the system. A single-band effective-mass approximation is employed to calculate the confined electron and heavy-hole energy levels, taking the geometry and structural information extracted from the uncapping experiments as inputs. The calculated transition energy of the single QDM shows good agreement with the experimentally observed values. By decreasing the edge-to-edge distance between the two QDs within a QDM, a splitting of the electron (hole) wavefunction into symmetric and antisymmetric states is observed, indicating the presence of lateral coupling. Site control of such lateral QDMs obtained by growth on a pre-patterned substrate, combined with a technology to fabricate gate structures at well-defined positions with respect to the QDMs, could lead to deterministically controlled devices based on QDMs. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet
    (College Park, MD : Institute of Physics Publishing, 2010) Koban, I.; Matthes, R.; Hübner, N.-O.; Welk, A.; Meisel, P.; Holtfreter, B.; Sietmann, R.; Kindel, E.; Weltmann, K.-D.; Kramer, A.; Kocher, T.
    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% Chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Particles as probes for complex plasmas in front of biased surfaces
    (College Park, MD : Institute of Physics Publishing, 2009) Basner, R.; Sigeneger, F.; Loffhagen, D.; Schubert, G.; Fehske, H.; Kersten, H.
    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in terms of the dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc and rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments, we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Engineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructures
    (College Park, MD : Institute of Physics Publishing, 2008) Schroetter, T.; Zaumseil, P.; Seifarth, O.; Giussani, A.; Müssig, H.-J.; Storck, P.; Geiger, D.; Lichte, H.; Dabrowski, J.
    The integration of alternative semiconductor layers on the Si material platform via oxide heterostructures is of interest to increase the performance and/or functionality of future Si-based integrated circuits. The single crystalline quality of epitaxial (epi) semiconductor-insulator-Si heterostructures is however limited by too high defect densities, mainly due to a lack of knowledge about the fundamental physics of the heteroepitaxy mechanisms at work. To shed light on the physics of stacking twin formation as one of the major defect mechanisms in (111)-oriented fcc-related heterostructures on Si(111), we report a detailed experimental and theoretical study on the structure and defect properties of epi-Si(111)/Y2O 3/Pr2O3/Si(111) heterostructures. Synchrotron radiation-grazing incidence x-ray diffraction (SR-GIXRD) proves that the engineered Y2O3/Pr2O3 buffer dielectric heterostructure on Si(111) allows control of the stacking sequence of the overgrowing single crystalline epi-Si(111) layers. The epitaxy relationship of the epi-Si(111)/insulator/Si(111) heterostructure is characterized by a type A/B/A stacking configuration. Theoretical ab initio calculations show that this stacking sequence control of the heterostructure is mainly achieved by electrostatic interaction effects across the ionic oxide/covalent Si interface (IF). Transmission electron microscopy (TEM) studies detect only a small population of misaligned type B epi-Si(111) stacking twins whose location is limited to the oxide/epiSi IF region. Engineering the oxide/semiconductor IF physics by using tailored oxide systems opens thus a promising approach to grow heterostructures with well-controlled properties. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Nonequilibrium phase transitions in finite arrays of globally coupled Stratonovich models: Strong coupling limit
    (College Park, MD : Institute of Physics Publishing, 2009) Senf, F.; Altrock, P.M.; Behn, U.
    A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter ac(N) is determined. We identify a crossover from linear to square root scaling with increasing distance from ac. The crossover point approaches ac in the limit N →∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams
    (College Park, MD : Institute of Physics Publishing, 2010) Pfotenhauer, S.M.; Jäckel, O.; Polz, J.; Steinke, S.; Schlenvoigt, H.-P.; Heymann, J.; Robinson, A.P.L.; Kaluza, M.C.
    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser-plasma interaction on a thin foil target is spectrally shaped by a secondary laser-plasma interaction on a separate foil, reliably creating well-separated quasi-monoenergetic features in the energy spectrum. The observed modulations are fully explained by a one-dimensional (1D) model supported by numerical simulations. These findings demonstrate that laser acceleration can, in principle, be applied in an additive manner. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    A novel engineered oxide buffer approach for fully lattice-matched SOI heterostructures
    (College Park, MD : Institute of Physics Publishing, 2010) Giussani, A.; Zaumseil, P.; Seifarth, O.; Storck, P.; Schroeder, T.
    Epitaxial (epi) oxides on silicon can be used to integrate novel device concepts on the canonical Si platform, including functional oxides, e.g. multiferroics, as well as alternative semiconductor approaches. For all these applications, the quality of the oxide heterostructure is a key figure of merit. In this paper, it is shown that, by co-evaporating Y2O3 and Pr2O3 powder materials, perfectly lattice-matched PrYO3(111) epilayers with bixbyite structure can be grown on Si(111) substrates. A high-resolution x-ray diffraction analysis demonstrates that the mixed oxide epi-films are single crystalline and type B oriented. Si epitaxial overgrowth of the PrYO3(111)/Si(111) support system results in flat, continuous and fully lattice-matched epi-Si(111)/PrYO3(111)/Si(111) silicon-on-insulator heterostructures. Raman spectroscopy proves the strain-free nature of the epi-Si films. A Williamson-Hall analysis of the mixed oxide layer highlights the existence of structural defects in the buffer, which can be explained by the thermal expansion coefficients of Si and PrYO3. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Laser-driven ion acceleration using isolated mass-limited spheres
    (College Park, MD : Institute of Physics Publishing, 2010) Sokollik, T.; Paasch-Colberg, T.; Gorling, K.; Eichmann, U.; Schnürer, M.; Steinke, S.; Nickles, P.V.; Andreev, A.; Sandner, W.
    We report on our experiments on laser-driven ion acceleration using fully isolated mass-limited spheres with a diameter down to 8μm for the first time. Two-dimensional (2D) particle-in-cell (PIC) and hydro-code simulations were used to show that the pre-plasma at both the front and rear sides of the target strongly affect the efficiency of the ion acceleration. The mechanism of the plasma flow around mass-limited targets has not yet been identified for laser-driven ion acceleration. Our models indicate that this effect is the cause of the observed limitation to the ion-beam energy in both previous experiments and in our own. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Imaging of carrier-envelope phase effects in above-threshold ionization with intense few-cycle laser fields
    (College Park, MD : Institute of Physics Publishing, 2008) Kling, M.F.; Rauschenberger, J.; Verhoef, A.J.; Hasović, E.; Uphues, T.; Milošević, D.B.; Muller, H.G.; Vrakking, M.J.J.
    Sub-femtosecond control of the electron emission in above-threshold ionization of the rare gases Ar, Xe and Kr in intense few-cycle laser fields is reported with full angular resolution. Experimental data that were obtained with the velocity-map imaging technique are compared to simulations using the strong-field approximation (SFA) and full time-dependent Schrödinger equation (TDSE) calculations. We find a pronounced asymmetry in both the energy and angular distributions of the electron emission that critically depends on the carrier-envelope phase (CEP) of the laser field. The potential use of imaging techniques as a tool for single-shot detection of the CEP is discussed. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.